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Abstract

Adistinctionbetween indolent and aggressive disease is amajor
challenge in diagnostics of prostate cancer. As genetic heteroge-
neity and complexity may influence clinical outcome, we have
initiated studies on single tumor cell genomics. In this study, we
demonstrate that sparseDNAsequencingof single-cellnuclei from
prostate corebiopsies is a richsourceofquantitativeparameters for
evaluating neoplastic growth and aggressiveness. These include
the presence of clonal populations, the phylogenetic structure of
those populations, the degree of the complexity of copy-number
changes in those populations, and measures of the proportion of
cells with clonal copy-number signatures. The parameters all
showed good correlation to the measure of prostatic malignancy,
the Gleason score, derived from individual prostate biopsy tissue
cores. Remarkably, a more accurate histopathologic measure of

malignancy, the surgical Gleason score, agrees better with these
genomic parameters of diagnostic biopsy than it does with the
diagnostic Gleason score and related measures of diagnostic
histopathology. This is highly relevant because primary treatment
decisions are dependent upon the biopsy and not the surgical
specimen. Thus, single-cell analysis has the potential to augment
traditional core histopathology, improving both the objectivity
and accuracy of risk assessment and inform treatment decisions.

Significance: Genomic analysis of multiple individual cells
harvested from prostate biopsies provides an indepth view of
cell populations comprising a prostate neoplasm, yielding
novel genomic measures with the potential to improve the
accuracy of diagnosis and prognosis in prostate cancer. Cancer Res;
78(2); 1–11. �2017 AACR.

Introduction
Histopathology of tissue biopsies is a standardmethodused for

evaluating cancer risk. Many decades of experience have led to
classification of the histologic types correlated with clinical out-
come. Prostate cancer diagnosis is routinely made by obtaining

biopsy specimens under ultrasound guidance. The Gleason score,
assigned to the prostate biopsy (PB), is a well-established mor-
phologic grading system that predicts adverse pathology of the
radical prostatectomy (RP) surgical specimen and biochemical
recurrence following local curative treatment of prostate cancers.
However, the Gleason score, which is based on changes in
glandular architecture, is hampered by multifocality, morpho-
logic heterogeneity of prostatic lesions, sparse stochastic sam-
pling, and inter- and intraobserver variability (1–3). Of the nearly
onemillionmenbiopsied annually (4), only about one fourth are
diagnosed with cancer (5). Half of those diagnosed have a
Gleason score of 6 or lower (6), which has very low metastatic
potential, and the proper clinical treatment for these men is
unclear. Indeed, upon removal of the prostate and subsequent
histologic analysis, the Gleason score is often revised, and an
upgrade upon surgery is associated with adverse prognosis (7–9).
Hence, there is an unmet need for improved diagnostics and risk
assessment.

We report here a small pilot study to explore the utility of
single nucleus sequencing (SNS) to aid diagnosis. Although
the heterogeneity and molecular complexity of prostate
tumors have been characterized in several large-scale genomic
studies (10–16), none have used multiregional single-cell
DNA analysis to examine intraprostatic genomic complexity.
The main output of SNS consists of profiles of integer-valued
copy-number variation (CNV) in individual cells. Given this
output, we can examine intratumor genomic heterogeneity
and determine the genealogical relationships among tumor

1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. 2Technological
School of Electronic Systems, Technical University of Sofia, Sofia, Bulgaria.
3Department of Urology, New York University Langone Medical Center, New
York, New York. 4Department of Urology, Weill Medical College of Cornell
University, New York, New York. 5Department of Pathology and Laboratory
Medicine, Weill Medical College of Cornell University, New York, New York.

Note: Supplementary data for this article are available at Cancer Research
Online (http://cancerres.aacrjournals.org/).

Current address for R. Aboukhalil: GenapSys, Redwood City, CA; Current
address for G. Sun: Intuit Inc., Mountain View, CA; Current address for A.
Srivastava: Department of Urology, Montefiore Medical Center, Albert Einstein
College of Medicine, New York, New York; Current address for S. Gruschow:
PolicyLab, The Children's Hospital of Philadelphia, Philadelphia, PA; Current
address for S.S. Yadav: Department of Urology, Icahn School of Medicine at
Mount Sinai, New York, New York; Current address for J. Hicks: Department of
Biological Sciences, University of Southern California, Los Angeles, CA.

CorrespondingAuthor:A. Krasnitz, Cold Spring Harbor Laboratory, 1 Bungtown
Road, Cold Spring Harbor, NY 11724. Phone: 516-367-6863; E-mail:
krasnitz@cshl.edu

doi: 10.1158/0008-5472.CAN-17-1138

�2017 American Association for Cancer Research.

Cancer
Research

www.aacrjournals.org OF1

Research. 
on January 23, 2018. © 2017 American Association for Cancercancerres.aacrjournals.org Downloaded from 

Published OnlineFirst November 27, 2017; DOI: 10.1158/0008-5472.CAN-17-1138 

http://crossmark.crossref.org/dialog/?doi=10.1158/0008-5472.CAN-17-1138&domain=pdf&date_stamp=2018-1-8
http://cancerres.aacrjournals.org/


cell subpopulations. As the cells are sampled from a number
of anatomically separate locations, we can delineate cell migra-
tion patterns within each subpopulation. We can further
assess, within each subpopulation, the degree of global chro-
mosomal instability and gain direct insights into molecular
mechanisms that may be driving the growth and metastatic
potential of malignancy, such as locus-specific amplifications
and deletions. Thus, SNS is a source of genomic information
complementary to conventional pathology and histology. As
very few cells are required, in the hundreds, only minimally
invasive procedures are needed.

Here, we describe a small pilot study on 11 patients. In 8
cases, we compare genomic pathology based on SNS to histo-
pathology reports based on standard hematoxylin–eosin
(H&E) staining of diagnostic needle core biopsies. Our proce-
dure maintained tissue integrity of cores for downstream
microscopic assessment because we used only the cells that
exfoliated with gentle washing of the core prior to formalin
fixation. By maintaining the association of exfoliated cells with
their core of origin, we directly compare those exfoliated cells
with histopathology from their anatomic region. Clearly, one
distinction in the two procedures is that although histopathol-
ogy samples core longitudinal sections, analyses of exfoliated
cells sample the core surface. For all biopsied patients, we used
both standard random cores and MRI-ultrasound fusion–tar-
geted biopsies. The prostate was removed in 5 of these 8 cases,
so we also compare single-cell molecular analysis with the final
pathologic assessment. In 3 cases (3 of 11) only cores from RP
were available for SNS. In the following, we use the terms
"core," "sector," or "area" interchangeably to denote an ana-
tomic origin within a prostate of the cells we profile.

As part of our program to evaluate SNS in contextwith anatomy
and histopathology, we have developed new algorithms for
statistical inference of clonal structure based on CNV profiles.
We also introduce an early version of a "single cell genomics
viewer" (SCGV). This is an integrated and interactive visualization
platform for CNV profiles in relation to clonal phylogeny, ana-
tomic spread, pathologic score, and genome annotation, among
others.

Analysis of several hundred cells per patient provides a
detailed evolutionary picture of their prostatic neoplasia.
Sectors associated with cancers identified by histopathology
(positive Gleason score) typically display sets of cells with
statistically significant shared copy-number events, which we
interpret as evidence for clonal expansion. With important
exceptions, benign sectors typically do not display such clones.
In cases with low to intermediate grade disease, we find that
SNS has greater sensitivity than core histopathology, as judged
by comparison with revised grading following RP. Thus, SNS
has the potential to significantly improve tumor staging
and grading, and, given the minuscule amount of tissue it
requires, could do so with a less invasive procedure such as
fine needle aspiration.

Materials and Methods
We performed SNS on a total of 4,021 nuclei from 122

anatomical locations in 11 patients spanning a broad histologic
spectrum from benign prostatic epithelium to high-grade pros-
tatic intraepithelial neoplasia (HGPIN) and frank carcinoma
(within and beyond the prostate) in both early and advanced

stage diseases. The entire workflow of sample and data processing
by SNS is depicted in Supplementary Fig. S1.

Sample acquisition from RP specimens
A total of 16 tissue biopsies were obtained from 3 patients

(COR001.GS9.1, COR002.GS6.1, and COR003.GS9.2) undergo-
ing RP at New York Presbyterian-Weill Cornell Medical Center.
The patients provided informed consent, and radical prostatec-
tomy specimens (RPS) were processed and bio-banked according
to a protocol previously published (17). The clinical study was
conducted following U.S. Common Rule, with approval from
Weill CornellMedical Center Institutional ReviewBoard. The lead
study pathologist, after reviewing H&E sections of the banked
frozen tissue, selected 5 to 6 sectors of interest from each RPS. A 1
mmdiameter core of tissue from each of the sectors of interest was
obtained from the frozen tissues. All cores of frozen tissue were
placed into sterile tubes and maintained on dry ice for transfer to
Cold Spring Harbor Laboratory for SNS. Clinical and pathologic
data were collected and maintained in a database curated by the
Weill Cornell Medical College Center for Prostate Cancer.

Sample acquisition from PB washings
Under an Institutional Review Board–approved protocol,

8 patients (NYU001-NYU005, NYU007, and NYU009-NYU011)
undergoing PB at the Smilow Comprehensive Prostate Cancer
Center (SCPCC) at NYU Langone Medical Center participated in
the SNS study. Informed consent was obtained independently for
the PB and participation in the clinical study, as guided by the
principles of the Belmont Report conducted in accordance with
theCommonRule.Demographic and clinical information related
to risk and aggressiveness of diagnosed cancers was collected and
maintained in SCPCC database. All but 1 patient received the
standard 12-core TRUS-guided biopsy, and all patients with an
MRI lesion underwent MRI-ultrasound fusion–targeted biopsy
with 2 to 4 cores obtained from the MRI lesion(s) depending on
clinical indication. The biopsy cores were processed separately
with the site of origin noted. Individual cores of prostate tissue
were placed in site-separated vials filled with 5 mL of sterile wash
buffer (1x PBS containing 0.5% BSA and 2 mmol/L EDTA) and
gently inverted several times for 60 seconds to enhance exfoliation
of prostate cells. After inversion, prostate cores were removed
from the wash solution using disposable single-use sterile forceps
and transferred to site-separated containers with formalin fixative
for histologic processing and pathologic evaluation.

The vials containing the exfoliated cell suspensions were coded
in order to identify the site-specific location corresponding to the
biopsy template, along with a numerical code to deidentity the
patient. The key to the patient ID was maintained by the Study
Coordinator at NYU in order to enable correlation of the molec-
ular results with histopathology. The prostate cores were exam-
ined by NYU Langone Medical Center pathologists who assigned
a Gleason score to all observed prostate cancers along with the
total linear dimension of cancer, and the percentage of the tissue
core thatwasGleason patterns 3, 4, and 5. The presence and extent
of HGPIN, perineural invasion, and atypical small acinar prolif-
eration were also noted in the final diagnostic pathology reports.
PBwashingswere kept onwet ice for 1 to2hours during transfer to
CSHLwhere the cell suspensions were briefly centrifuged to pellet
the cells and lysed using NST-DAPI buffer described in previous
studies (18, 19). A total of 5 of these men underwent RP. The
linear diameter, Gleason score, and percentage of Gleason 3, 4,
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and 5 were reported for all observed tumor(s). The site(s) and
extent of extra-prostatic extension, the presence of seminal vesicle
invasion, and surgical margins were reported in final pathology
report on RPS.

Nuclei isolation from clinical samples, DNA staining, and
single-cell FACS

Nuclei were isolated from frozen core biopsies and biopsy
washings using NST-DAPI buffer [800 mL of NST (146 mmol/L
NaCL,10mmol/LTrisbaseatpH7.8,1mmol/LCaCl2,21mmol/L
MgCl2, 0.05% BSA, 0.2% NP-40)], 200 mL of 106 mmol/L
MgCl2, 10 mL of 500 mmol/L EDTA at pH 8.0, and 10 mg of
DAPI. Nuclei were prepared from frozen core biopsy of RPS by
finely mincing tissue in 1.0 to 2.0 mL of NST-DAPI buffer as
described in apreviously published protocol (18, 19).Nucleiwere
prepared from PB washings by gently centrifuging washings at
1,000 rpm for 5 minutes to pellet the exfoliated cells followed by
removal of supernatant and addition of 1.0 mL of NST-DAPI
buffer to the cell pellet. All nuclei suspensions were filtered
through a 25-mm cell strainer prior to flow sorting. Single nuclei
were sorted by FACS using the BD Biosystems SORP flow cyt-
ometerbygatingcellulardistributionsbasedondifferences in total
DNA content (ploidy) relative to DAPI intensity such that enrich-
ment for aneuploid cells is possible.

Whole-genome amplification and Illumina library
construction

Single nuclei were deposited into individual wells in a 96-well
plate and amplified using Sigma-Aldrich's GenomePlexWGA4 kit
(catalog no. WGA4-50RXN) according to the manufacturer's
instructions. Whole-genome amplification (WGA) DNAwas son-
icated using a Covaris focus acoustics system. The Covaris E210
300� sonication program generated WGA DNA inserts of the
desired length of approximately 300 bp (range, 200–400 bp) for
library construction. Multiple libraries were combined into pools
ranging from 8 to 12 libraries to pools of 96 libraries for 76 bp
single-read sequencing on single lanes of Illumina's GAIIx and
HiSeq flow cells, respectively. The first 30 bases of each read were
trimmed to remove any WGA primer sequence. For the RPS, we
profiled about 25 to 100 cells from the 5 to 6 sectors of interest,
and for the core washings, we profiled approximately 20 to 25
cells perwashing from the standard 12 randomand from theMRI-
ultrasound fusion–targeted biopsies.

Derivation of integer-valued CN profiles
Whole-genome copy-number profiles for each sample were

determined as described (18, 19) with minor modifications. A
short summary follows: Illumina single-end reads were aligned
end to end without gaps using Bowtie (20) to human genome
version GRCh37 with the pseudo-autosomal regions of chro-
mosome Y masked. The genome was partitioned into 20,000
bins with equal expected number of uniquely mapped posi-
tions. A read-count vector was formed for each single-nucleus
read set, with the numbers of reads mapping to each bin as
components. DNA copy-number profiles were derived for each
nucleus by first normalizing the corresponding read-count
vector to the mean read count of one per bin, then using
LOWESS regression to remove bias in the read counts due to
variation of bin-wise GC content. A number of regions in the
genome, mainly at or adjacent to centromeres, have been found
to consistently display anomalously high read depth in both

bulk and single-cell sequencing data (21). Bins corresponding
to such regions were masked from downstream copy-number
analysis. For the remaining bins, a piecewise constant approx-
imation (segmentation) of the copy-number profile (segmen-
tation vector) is computed using circular binary segmentation
algorithm as implemented by R language package DNAcopy
(22). The result is a segmented profile with a mean value close
to 1. The integer position-dependent copy number was esti-
mated by a least-squares fit, under the assumption that the copy
number lies in the 1 11 range, and with the cell ploidy as a
parameter (23).

Removal of shredded profiles
We find some cell profiles are "shredded," meaning that sub-

stantial portions of the genome are homozygously deleted.
Although the reason for these deletions is not known, it is unlikely
that a cell can sustain such major losses and retain viability, and
this widespread damage must therefore have occurred post vivo.
Consistent with this assumption, genomic locations of these
homozygous deletions do not recur from cell to cell. We remove
such incomplete profiles from further consideration if the homo-
zygous losses span over 1% of the genome.

Determination of change points in individual CN profiles
Each segmented CN profile is an integer-valued function of

the bin number, which we visualize as proceeding in chromo-
somal order from chromosome 1 to Y. The integer-valued
function is further reduced to a set of change points (CP), also
sometimes referred to as a "break points." A CP is specified by
its position (bin number) and the sign of CN discontinuity at
that position, positive if the function goes up, negative other-
wise. To allow for the uncertainty inherent in segmentation, a
CP is assumed to be localized in an interval spanning b bins and
centered at the most likely CP position as determined by the
segmentation algorithm. Our best estimate for b is 3 for the data
analyzed here. Thus, a CN profile for the n-th cell is reduced to a
set Sn of genomic intervals of length b, one set for each sign,
which we also write as Sn � Sþn[S�n. For brevity, we will call
this form of a CN profile CP-reduced. To further guard against
anomalously high read counts in the vicinity of a centromere,
we filter out all CP due to copy-number events that lie entirely
within the regions spanned by cyto-bands p11 through q11 of
each chromosome.

Definition of the "feature set" and "incidence table" for a PB
sample

A critical step in our analysis is the definition of the "feature set"
F for a sample ofN cells, F� {fk, 1� k�K}.We describefirst Fþby
considering the set Sþ � [nS

þ
n of all positive intervals, present in

the CP-reduced profiles of all N cells. The set Fþ � {fþk, 1 � k �
Kþ} is a minimum set of "piercing points" for Sþ, as described
previously (24). Briefly, the piercing points are a smallest set of
points such that each interval in Sþ contains at least one of them.
Next, we derive the binary incidence table Tþ, with entries Tþkn,
indicating whether fþk is contained in an interval in Sþn. The
subset F� and the incidence tableT� are derived in similar fashion,
starting from a set S��[nS

�
n of all negative intervals. Finally, the

table T is obtained by concatenation of Tþ and T�. We call a
feature widely shared by a subset of cells if it is present in at least
85% of the subset.
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Computation and significance assessment of pairwise
dissimilarity among cells in a biopsy sample

For two cells m and n in a sample, the dissimilarity is derived
from the number of overlapping and disjoint features: those
shared and those not shared, as derived from the incidence tables
Tþ and T�. For simplicity of presentation, we consider their
concatenation T. For the derivation, we use a one-tailed Fisher
exact test (in R alternative ¼ "greater") on the respective 2 � 2
contingency table comprised of the count of features shared and
not shared, yielding the P value pmn. We take log10(pmn) as the
dissimilarity measure. The resulting N(N-1)/2 dissimilarities for
all possible pairs ofN cells in the sample are assessed for statistical
significance by testing the null hypothesis that Tþ and T� are
random, keeping their row and column sums fixed: That is, the
overall counts per feature and overall number of incidences per
cell fixed. This is accomplished by creating randomized incidence
tables with the preserved margins of the observed incidence
matrices, and for each computing the N(N-1)/2 dissimilarities.
A total of 500 randomizations were performed for each biopsy
patient. Finally, the FDR is computed by comparing the observed
dissimilarities to those obtained from the randomizations. An R
language implementation of the randomization procedure is
provided in the Supplementary Information.

Following this procedure, we found four pairs of single-cell
genomes, in a total of thousands of cells compared over 12
samples, which had anomalously low dissimilarity. In these four
cases, each cell of a pair originated from two neighboring wells on
the 96-well plate, and to rule out the possibility that the DNA of
the two neighboring wells were cross-contaminated, we elimi-
nated each pair. As a result of this cautionary tale, we checked the
well adjacency of cells considered clones, the quantal nature of
their features, andwhere they reside on the phylogenetic trees.We
find no reason to suspect well contamination plays any role in
clone identification, and as an extra safeguard, we impose a rule of
three (see next section).

Genealogy reconstruction and identification of clones
Genealogical relations among the cells (or more formally,

"leaves") in the sample were reconstructed by hierarchical
clustering, with the dissimilarity matrix as defined above and
with the average linkage. A branch in the resultant tree was
termed "cohesive" if, for any pair of its cells, the FDR for the
dissimilarity did not exceed a threshold value t¼ 0.01, and if its
parent branch did not have this property. A cohesive branch
was considered hard clonal if at least four features f2F could be
found, such that each was widely shared by the cells in the
branch but not by the cells in the entire tree. In addition, for the
reasons stated in the previous section, a branch must contain at
least three cells to be designated hard clonal. Among the
ancestral branches of a hard-clonal branch, we then identify
the one nearest the root for which at least three features are
widely shared. Such branches are termed soft clonal. Soft-clonal
branches with six cells or more were examined for evidence of
subclones as follows. First, the clonal incidence table TC was
derived for a clonal branch C, by reducing the sample-wide
incidence table T to a subtable with columns only for cells c2C,
followed by removing all the constant rows in that subtable. As
a result, the rows of TC corresponded to the features in the
clonal feature set FC�F. Next, TC was used to derive within-
clone dissimilarities, assess their significance, and reconstruct
the within-clone genealogy, following the procedure described

for T above. A branch in the resultant tree was deemed hard
(soft) subclonal using the above criteria for hard (soft)-clonal
branches.

A core was considered clone-harboring if cells originating
from the core were found to belong to a hard-clonal branch. We
then counted cells originating from the clone-harboring cores
and belonging to soft-clonal branches in order to quantify
clonal involvement of the cores (Tables 1–3 and Supplemen-
tary Table S1).

Determination of clonal features
Adistinguishing property of clonal branches is co-occurrence of

multiple features across the cells belonging to the branch. We call
such "clonal features" and estimate their number in a biopsy
sample using the sample-wide incidence table T. Specifically, we
compute the covariance matrix among the features (rows of T)
and determine, for each feature f, the sum Sf of three largest
covariancematrix elements with features other than f. A feature f is
declared clonal if the null hypothesis formulated above for T can
be rejected at P¼ 0.05 level, Bonferroni-corrected for the number
of features, using Sf as a statistic in a right-tailed test. The null
hypothesis is tested by permutation as above. The number of
clonal features is tabulated for all biopsy samples andmay serve as
a measure of tumor progression.

Sensitivity of clone detection to the depth of coverage
To examine how the number and cell content of clonal

branches vary as a function of the coverage depth in a PB sample,
genealogy reconstruction was performed with the number of
input sequencing reads per cell reduced by a factor of 2r, with r
¼ 1, 2, 3, and 4, comparing the results with when all R available
reads are used. To this end, three random samples of 2�rR reads
out of the originalRwere generated and for each of the four values
of the reduction factor. For each randomization, the reads were
sorted into 20,000� 2�r bins, with the expected number of reads
per bin in the normal genome constant across all bins in the
genome and for all values of r. The entire processing pipeline as
described above was then followed to identify clonal branches.
The number of cells within each clonal branch was counted, and
we determined whether the clonal cells thus identified in each
read reduction simulation matched the clonal cells identified
using all reads.

Interactive single-cell genome data viewer
Single-cell genome data can be viewed in a Python Matplotlib

interactive application. This application will be referred to in this
section as the single-cell viewer SCGV. The SCGV application
opens on a heat map–like display, referred to as the heat map
view. This heat map view consists of, from top to bottom, a
dendrogram representing a clustering of the single-cell data, two
tracks indicating, where appropriate, the clonal and the subclonal
identity of cells, a heat map representing copy number, and,
finally, four annotation tracks. The cells from a single tumor
sector can be viewed in a heat map view where the dendrogram
is a subtree of the full tree rather than a reclustering of the cells in
that sector. Detailed data from a set of cells can be displayed in a
genome view.

A zoom-in feature enables the user to select and view in detail
any rectangular portion of the heat map, retaining the subtree for
that portion. Further, the columns of the heat map can be
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reorderedby the sector. The latter feature is useful, for example, for
identifying sectors harboring clonal cell populations.

The color coding on the heat map is assigned by copy number
for each cell individually. The median copy number is white,
median minus 1 is light blue, median minus 2 is dark blue,
median plus 1 is light red, and median plus 2 is dark red. Copy
number 0 regions are colored yellow regardless of difference from
the median. The annotation tracks are sector, ploidy, multiplier,
and error. The sector track is color coded to indicate which sector
of the tumor the cell came from. The other tracks are encoded in
gray scale. The ploidy track indicates the ploidy gate the cells were
sorted from. Themultiplier is the computed ploidy as described in
theMaterials andMethods section. The error is the sumof squares
of the normalized bin count values minus the segmented values.
This is an indication of data quality. If clonal branches are found,
cells comprising each clonal branch are indicated in color in the
clone track. In the same fashion, cells comprising soft subclonal
branches are indicated in the subclone track.

The genome view has one panel per cell. The genome is
represented left to right from chromosome 1 through chromo-
some Y in chromosome position coordinates. There is one data
point for each genome bin. The gray line is the normalized bin
count. The blue line is the segmented value for each bin. The y axis
is copy number. The cell ID, sector, ploidy, segment error, quantal
error, and percent shredded are indicated in the title of each panel.
Segment error is the sum of squares of the normalized bin count
minus segmented value for each bin. The quantal error is the sum
of squares of the segment valueminus the rounded segment value
(copy number) for each bin. The shredded value is the percentage
of bins in the autosomes at copy-number zero.

Results
We applied methods for genome analysis on isolated nuclei

obtained from either diagnostic needle core biopsies or surgical
specimens. In the former case, the tissue availability for SNS is
constrained by the requirements of histopathology: in order to
render a diagnosis based on tissue morphology, each needle
core must be preserved in its entirety for multisectional micro-
scopic examination, and the core integrity must not be dis-
rupted by sacrificing any portion of it for other purposes. We
therefore only used cells exfoliated from the cores. In addition,
we isolated and analyzed a small number of cells from urine,
collected prior to invasive procedures in patient cases NYU001.
GS7.1, NYU002.Pin.1, and COR002.GS6.1. Mapping sparse
sequence data yielded copy-number profiles, and these profiles
placed cells into phylogenetic trees. We created an integrated
view of the relevant data with pathologic assessment and
anatomy in an SCGV. The flow diagram of data processing is
depicted in Supplementary Fig. S1.

Processing, viewing, and interpretation
We first describe one case (NYU007.GS7.2) in detail to illus-

trate our methods and their interpretation. A graphical summary
of results for this case is presented in Fig. 1A–G. Similar case
reports for all are found in the Supplementary Information, where
they are illustrated by Supplementary Figs. S2–S22.

A 65-year-old man referred for PB underwent a standard 12-
core biopsy procedure with additional tissue cores directed into
an MRI lesion highly suspicious for cancer using MRI-ultrasound
fusion–targeted biopsy. The pathology report of the prostate
biopsies identified only 1 core out of 13 cores with a positive
but low Gleason score (GS 6).

We analyzed on average 20 to 25 cells from each core or sector
(Fig. 1A). In single-nucleus sequencing, we aim for about two
million reads per nucleus. Sequence reads with high-confidence
maps to the reference genome were enumerated in 20,000 con-
secutive genomic "bins," and bin counts used to make a segment-
ed copy-number profile, as previously described (18, 19). No
segments shorter than 5 bins were allowed. Thus, assuming a
genome size of 3 � 109 base pairs, on average the genomic
resolution of our copy-number analysis was 7.5� 105 base pairs.
In the global view of the SCGV (Fig. 1B), the segmented profile of
each cell is represented as a separate column in a red-blue heat
map, with bins arranged in the genome order as rows. This cell
information is integrated with sector and ploidy encoded as color

Table 3. Correlation of genomic and histopathologic measures of malignancy with the diagnostic and revised Gleason scores

SCORE
Diagnostic Gleason Revised Gleason

Measure Correlation P value Correlation P value

Clonal heterogeneity 0.36 (�0.43) 0.26 (0.35) 0.86 (0.76) 0.01 (0.11)
Proportion of clonal cells 0.46 (�0.12) 0.14 (0.8) 0.79 (0.63) 0.01 (0.16)
Proportion of clonal features 0.55 (0.12) 0.08 (0.8) 0.79 (0.63) 0.01 (0.16)
Proportion of sectors with clonality 0.55 (0.12) 0.08 (0.8) 0.79 (0.63) 0.01 (0.16)
Clonal spread 0.55 (0.12) 0.08 (0.8) 0.79 (0.63) 0.01 (0.16)
Proportion of sectors with pathology 0.71 (0.36) 0.02 (0.4) 0.7 (0.32) 0.03 (0.5)
Highest involvement of cancer 0.83 (0.67) 0.01 (0.14) 0.78 (0.53) 0.02 (0.3)
Mean involvement of cancer 0.8 (0.6) 0.01 (0.17) 0.7 (0.32) 0.03 (0.5)
Diagnostic Gleason score 1 (1) 0.002 (0.03) 0.64 (0) 0.06 (0.1)

NOTE: Summary of the correlations of genomic and histopathologic measures of malignancy with the diagnostic and revised Gleason scores. Tabulated are Kendall
rank correlations and the corresponding P values for each measure and each Gleason score, computed for the eight diagnostic biopsy cases in Table 1. The values in
parentheses correspond to the five diagnostic biopsy cases for which histopathologic evaluation of a resected prostate is available.

Table 2. Clonality and Gleason status

A. Core biopsies
Clonality <Gleason 6a �Gleason 6 Total

No 77 13 90
Yes 6 26 32
Total 83 39 122

B. Patients
Clonality <Gleason 6 �Gleason 6 Total
No 2 0 2
Yes 0 9 9
Total 2 9 11

NOTE: Summary of clonal properties: clonality of cell populations sampled from
the prostate correlateswith a Gleason score equal to or greater than 6 judged by
diagnostic biopsy (A) and patient's Gleason status (B).
aIncludes cores with HGPIN and benign prostatic epithelium.
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bars and a gray scale, respectively, indicated in tracks beneath the
heat map. We provide a key from sector to Gleason score at the
right (FIg. 1C) and place a phylogenetic tree above the copy-
number heat map, as we now describe.

We assume throughout that a population with an aberrant
and shared copy-number profile consists of cancer cells. The
justification for this assumption is presented later. Our primary
computational task, therefore, is to determine clonal structure.

Figure 1.

SCGV images for the case NYU007.GS7.2. SCGV is an interactive and integrative tool for data visualization built in Python. A, Illustration of the prostate,
a walnut-sized organ, in which a dozen or more biopsies are taken, and single isolated nuclei prepared from each location. The copy-number profiles were
determined from low coverage sequence and arranged in a phylogenetic tree.B,Plot is one level of the viewer, showing the profiles for each of several hundred nuclei
as columns, integrated with information about the sector location, sector pathology, ploidy, and noise. From this level, one can call up at various scales portions
of the populations (C), or reorder the heat map by sector (D). E-F, One can view groups of profiles in greater detail and at any scale. G, From here, one can
open the UCSC Genome Browser to view the genetic loci with annotation, which in this case illustrates that an early event in the ontogeny of this cancer
has been a homozygous deletion of the CHD1 gene.
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It is based on capturing the intuitive notion of shared copy-
number events, and we give that an objective and quantitative
meaning. We then use hierarchical clustering to reconstruct the
phylogeny of the cells in the sample. The viewer software
arranges the cells as leaves of a phylogenetic tree, above the
heat map. We next use statistical criteria to determine which of
the branches of the tree qualify as clones and subclones, and
indicate the results in two tracks, beneath the tree and above the
heat map.

From this global view, we can zoom and examine in greater
detail any aspect of the global view in a separate interface.
Zooming (Fig. 1C), we see that the cancer has spread from the
main sector 2 to adjacent sectors 3 (called "HGPIN") and 6
(called "benign"). To see this more clearly, we can reorder the
heat map by sector (Fig. 1D). The bin counts and segmented
profiles for any subset of cells can be reached from any
interface displaying part of or the entire heat map, creating
the profile interface (Fig. 1E), which can be rescaled over any
chromosomal region (Fig. 1F and G). These profile views are
interfaces from which genome annotation can be read (Fig.
1H). For example, a magnified plot of chromosome 5 shows a
narrow loss of 5q21 in individual cells, outlined in red, a
region that encompasses the chromodomain helicase DNA
binding protein-1 gene (CHD1). This gene functions as a
chromatin remodeler and is a known tumor-suppressor
gene involved in prostate cancer biology (25). This region
undergoes further homozygous loss in sector 6 (bottom
profile, Fig. 1E).

We see already that single-cell analysis finds subpopulation
structure and detects more cancer than histopathology. Three
standard biopsy cores, not one, have cancer cells, and these can
be organized as a single clone (NYU007.GS7.2.1) with two
subclones (NYU007.GS7.2.1.1 and NYU007.GS7.2.1.2). One
of these subclones (NYU007.GS7.2.1.1) resides mainly in sec-
tor 2, with some in 3, and the other (NYU007.GS7.2.1.2)
mainly in sectors 2 and 6. Subclone NYU007.GS7.2.1.1 is by
far the largest population and fills entirely core 2, the only core
that pathology gave a positive score. There is also a second
apparently unrelated clone (NYU007.GS7.2.2) in sector 13,
which comprised three same-site MRI-targeted cores that were
called benign. From the data, we readily see that the profiles of
clone NYU007.GS7.2.1 are far more complex than those of
clone NYU007.GS7.2.2, whereas subclones NYU007.GS7.2.1.1
and NYU007.GS7.2.1.2 are roughly comparable. Finally, we
note that following RP, the GS was upgraded to a GS 7 (3þ4)
with identification of a single tumor focus localized to the left
posterior–lateral apex (see Fig. 1A).

Finally, we note the presence of sporadic copy-number
events not generally shared between cells. Such events are
present in some cells in all cases, and in most sectors, whether
clonal or not, and whether cancer is present or not. Noted
previously, we considered them artifactual, perhaps arising
from nuclear degradation or cleavage occurring during the
biopsy procedure.

Correlating histopathology and genomic pathology
Single-cell genome features consist of clonal and subclonal

population structure, relative proportion of populations, com-
plexity of genomic profiles, the number and location of invaded
sectors, and locus-specific information. The latter may be useful
for subtype analysis (15), butwedonot use it further in this study.

We tabulate genome features and histopathology of the core
biopsies in Table 1 and Supplementary Table S1. The latter is
interactive, with links leading to the relevant image files either
from the SCGV or histopathology. We also present in Fig. 2 a
graphical summary of the clonal structure, placed in its anatomic
context, for all six diagnostic-biopsy cases in which clones were
observed.

The data indicate that clonality is strongly associated with a
positive Gleason score, by core (Table 2A and Supplementary
Table S2) from biopsy and from postsurgical specimens (122
samples). The association, although strong and highly significant
[Fisher exact test odds ratio 24.6, 95% confidence interval (CI),
9.33 to infinity; P value¼ 1.26� 10�11], is not perfect, as we have
already seen in case NYU007.GS7.2, and discordance was
observed in both directions. However, histopathology examines
longitudinal sections of the biopsy core, whereas SNS samples
exfoliated cells from the perimeter of the core, so the twomethods
do not examine the same cells. Moreover, the Gleason score
assesses architecture and cell morphology, whereas cancer cells
may have migrated singly and not yet established architectural
features. Per patient, overall correlation between the presence of
clonal cells and a positive Gleason score is shown in Table 2B (11
samples, P value ¼ 0.018, FE test). These data are the main
justification for the assumption stated earlier that we treat cells
as cancer when they share abnormal genomes. We note that, by
this criterion, none of the cells isolated from urine represented
malignant populations.

Next, we considered a relation between histopathologic
findings and clonal heterogeneity at diagnosis, defined here as
the number of subclones plus the number of clones without
subclones. We computed a rank-based (Kendall) correlation of
this quantity with the overall Gleason score before and, where
available, after regrading following RP, for the 8 patients who
underwent diagnostic biopsy. This computation was repeated
for other useful genomic descriptors, namely, the proportion of
cores containing clonal cells; the proportion of cells judged
clonal; the genome complexity defined here as the number of
clonal features (cf Materials and Methods: Subsection 11); and
the clonal spread, defined as the average proportion of cells in a
sector from a clone affecting the highest number of sectors. For
comparison, we computed the correlation of the original and
the revised overall Gleason scores with four measures of malig-
nancy derived from histopathologic evaluation: the original
overall Gleason score itself; the proportion of cores called
Gleason positive; the percentage of a core involved in cancer,
averaged over all cores; and the maximal percentage of a core
involved in cancer among all cores. The results are found
in Table 3, together with P values. Also shown in Table 3 in
parentheses are correlations and P values for a subset of 5
patients who went on to RP with subsequent regrading. The
correlation of the original overall Gleason score with itself is
one by definition. Not surprisingly, the other three measures
derived from the diagnostic histopathologic evaluation also are
strongly correlated with the diagnostic Gleason score. However,
and more importantly, the five genome-derived descriptors
improve in both correlation and P value following regrading.
Upon regrading, heterogeneity is the best performing of all nine
parameters, followed closely by the other four genomic mea-
sures. All five genomic measures better correlate with the
revised Gleason score than the four measures derived from
conventional pathology.
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Single-cell versus bulk analysis of cores
We asked whether bulk sequence analysis would achieve results

comparable with those obtained by single-cell analysis. To this
end, we examined in detail in one specimen, NYU001.GS7.1, with
12 ultrasound-guided cores and 2 MRI-ultrasound-fusion–guided
cores. Eight cores showed both histopathology and genomic
clonality, and six showed neither. On all but one core, we
sequenced WGA from a hundred to a thousand nuclei and
obtained sparse (	2 million mapped reads per core) sequence
copy-number profiles (Supplementary Table S3, and associated
hyperlinks to profiles). We obtain flat profiles from the bulk
analysis of the six cores without cancer. In only four of the seven
cores with cancer do we observe an abnormal profile from bulk
analysis. Signal is not apparent in three, undoubtedly because so
few cells from those cores are from the cancer (see Supplementary
Table S3). In three of the four cores where we do see signal from
bulkanalysis,we seedistinctive copy-number features in single-cell
profiles (see hyperlinkswithin Supplementary Table S3), but those
distinctive features are absent in the corresponding bulk profile.

To extend the comparison of bulk to single-cell copy-number
profiles of core biopsy tissue to additional patient cases, we
performed, for all 6 patients with clonal populations detected in
core biopsies, an in silico pooling of sequence reads from single
cells, followed by copy-number profile derivation from the result-
ing pooled set of reads. This analysis was carried out for all cores
with clonal populations and, additionally, for a small number of
clone-free cores withGleason score of 6 or higher. In theNYU001.
GS7.1 case, where both in vitro and in silico bulk copy-number
profiles of cores are available, these profiles are in good agree-
ment, with the exception of a single core, for which only ten cells

were used to derive an in vitro profile. In the remaining five patient
cases, the results of the in silico bulk analysis are consistent with
our findings for the NYU001.GS7.1 case, namely that large-scale
copy-number lesions are not apparent unless clonal cells pre-
dominate in the specimen.

Clonal specificity of lesions harboring driver genes
We repeatedly observed that genomic lesions affecting genes

with a known role in prostate cancer may be clone- and/or sub-
clone-specific. Examples include deletions of 10q23, a region that
encompasses PTEN (a tumor-suppressor gene) and is frequently
lost inprostate cancer, in casesNYU001.GS7.1 andNYU010.GS7.3,
but only in their respective clone and subclone NYU001.GS7.1.1
andNYU010.GS7.3.1.1. In caseNYU010.GS7.3,wehaveoneoutof
three independent clones showing loss of 8p (NKX3.1) and gain of
8q, a region containing the c-MYC oncogene. In addition, case
NYU007.GS7.2 has a subclone (NYU007.GS7.2.1.2)with a narrow
deletion of 18q21, a region demonstrating frequent allelic losses
and implicated in prostate cancer progression.

Discussion
Clinical correlations

We have completed a pilot study of the utility of sparse
sequencing of single cells in the evaluation of prostate cancer
risk. Our major observations are summarized in Tables 2 and 3.
With coverage at about twomillion sequence reads per cell, we are
able to observe clonal genomic CNV patterns and tumor hetero-
geneity; the complexity of genomic alterations; and amplifica-
tions and deletions of specific loci, such as PTEN and RB. We can

Figure 2.

Clonal structure and spread. Clonal
structure is represented as a tree,
alongside with a schematic depiction of
the diagnostic PB, for the six
diagnostic-biopsy cases inwhich clones
were identified. For each tree, the
number of cells analyzed by sparse
sequencing is represented at each
node, with all cells at the root. Clones
and subclones are shown as colored
nodes of the tree, with the number of
cells sampled from each indicated. To
the right of each tree, a schematic
cross-section of the prostate is shown,
with the locations of origin for the
standard 12-core biopsy scheme
depicted as circles, and the locations of
the additional MRI-guided biopsies
depicted as squares. The fill colors at
each location correspond to the clones
and subclones found therein. Coreswith
pathologic finding ofmalignancy but no
clonal populations detected are
indicated by "þ." Cores with clonal
populations detected but no pathologic
finding of malignancy are indicated by
"N" nearby.
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infer anatomic spread and clonal expansion between cores, and
estimate the proportion of neoplastic cells per core washing.

The single most salient observation in the single-cell data is the
statistically robust correlation of "clonal" patterns of copy-num-
ber events with a Gleason score of 6 or greater (Table 2). There are
two-way discordances between observed clonality and histopa-
thology: instances of cores with morphologic malignancy but
without observed clonal copy-number changes, and the reverse.
These may arise from the method of sampling: for genome
analysis, we sample exfoliated cells from the washings of a core,
and therefore its periphery, whereas histopathology is determined
from longitudinal cross-sections of the core. Such diverse sam-
plingmethodswill expose different sets of cells for analysis. In our
opinion, sampling is the source of the discrepancy. However, we
cannot exclude other possibilities. First,malignancymaymanifest
first in one of two different ways, either by morphology or by
genomic change. Second, earlymalignant change in genomesmay
involvemechanisms that we cannot presently observe with sparse
sequencing: point mutations, copy-neutral rearrangements, qua-
si-stable epigenetic changes in gene expression, for examples.

Ideally, we would like to correlate genome profiles with
clinical outcome, as has been done for metastatic prostate
cancer (26). However, pathologists typically assess the Gleason
score following RP, and often that changes the score, and hence
risk (7–9). Thus, we do have some component of this study,
which can be correlated to outcome: do the genome measures
of cores predict the improved assessment afforded by exami-
nation of the excised prostate? Of the eight cases for which we
had core histopathology, five also underwent RP. Of those five,
one Gleason score was upgraded and two were downgraded.
Five of five measures of genome pathology correlated better to
the revised Gleason than four of four measures obtained from
core histopathology (Table 3).

The best genomic parameter for predicting the revised Gleason
score was genomic heterogeneity. We note, however, one out-
standing case, examined only after surgical excision, "COR001.
GS9.1." This cancer had a very high Gleason score, had invaded
outside the capsule with extension into the periprostatic soft
tissue, and had extensive genomic rearrangements, but it was not
heterogeneous. Based on this one example, we expect that het-
erogeneity is a high-risk predictor except in cases where one
dominant cancer subclone with extensive genome alterations has
finally emerged that overtakes the other clones. Given that the
genomic scores are somewhat independent, an algorithm based
on parameters, both histologic and genomic, but trained onmany
more casesmight greatly enhance assessment of risk anddecisions
about treatment.

Technical considerations
We have used existing laboratory protocols for obtaining

single-cell DNA sequence. Building upon previous binning, read
counting, and integer-valued segmentation, we added new sta-
tistical methods for inferring phylogeny from "clonal" and "sub-
clonal" patterns. We still handle a few steps manually. Among
these are elimination of genome patterns from shredded nuclei,
and choices about how to handle chromosome ends and cen-
tromeres, all discussed in the Materials and Methods section.
Work remains to achieve a fully automated procedure that could
be implemented in a clinical setting.

New with this report is our SCGV tool that allows us to visualize
all the information with a graphical user interface. SCGV integrates

DNA profile information with data quality, ploidy, subpopulation
structure, sector anatomy, histopathology, and the genetic content
of loci specifiedby theuser. In this respect, SCGV is distinct fromthe
published visualization software, which is more narrowly focused
on genomics (21). Importantly, SCGV enables seamless transitions
amongmultiple complementary views of genomic, histopatholog-
ic, and anatomic data, including clonal structure, as it results from
the analysis described here. A portable version of the viewer, with
additional advanced features, is available at https://github.com/
KrasnitzLab/SCGV and will be described in detail in future publi-
cation, along with a portable version of the SNS computational
workflow, currently under development.

Wedonot currently use our present protocols to observe single-
nucleotide variation in single cells, but we are designing and
testing newer single-nuclei sequencing methods that will enable
us to do so. Such information may facilitate diagnostic risk
assessment. There is no technical obstacle to pooling libraries
made from single cells of the same clonal expansion to obtain
deeper sequence and more genomic information.

With that approach in mind, and knowing that larger clinical
studies demand affordability, we have explored modifications to
the experimental procedure described here, with a view of reduc-
ing cost per cell from its present approximate value of $40. As the
cost per cell is partly driven by sequencing, we examined the
efficacy of using much lower coverage to identify tumor clones.
Our preliminary results, as shown in Supplementary Table S4,
suggest that 8- to 16-fold reduction of coverage per cell would not
significantly affect our ability to identify clones of cancer cells in
PB samples. Still furtherwork in progress (27, 28) suggests thatwe
can do this with even lower coverage, potentially as low as 50,000
reads per cell,making possible sparse analysis of nearly 5,000 cells
on a single lane of an Illumina HiSeq 2000, with a more focused
(and less expensive) follow-up on a subset of the interesting cells.
Partly, the costs reflect reagent costs and labor, which can be
reduced with microfluidics and automation. We expect that by
combining these modalities, costs can be reduced to less than a
dollar per nucleus.

The present method should be considered in relationship to
other methods for sequence analysis. In a small study, we per-
formed sparse sequencing from many nuclei culled from cores,
and there was, not surprisingly, less information (Supplementary
Table S3). Clearly, whole-genome deep sequencing of bulk DNA
holds the promise of identifying critical alterations driving cancer.
But this method is far too expensive for determining if a cancer
lesion is present or not in multiple cores. Moreover, the presence
of normal cells, which often greatly outnumber the cancer cells,
dilutes the signal of copy-number changes and makes very deep
coverage needed to detect point mutations. Worse, we have
repeatedly observed in this study clonal and subclonal specificity
of genomic lesions harboring genes implicated in prostate cancer.
Such subpopulation specificity likely is not limited to copy-
number gains and losses and extends to other types of genomic
variation, including point mutations. Clonal specificity of geno-
mic lesions can be examined by resorting to single-cell analysis
using sparse sequencing. The latter is sufficient to detect copy-
number changes and that is sufficient to deduce clonal population
structure. Once a clonal identity is determined, the libraries from
cells with that identity can be cherry-picked and pooled, and a
complete sequence obtained for identifying critical point muta-
tions. Thus, inexpensive sparse single-cell sequencing may be a
gateway to more comprehensive deep-sequencing methods.
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