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Abstract 
Motivation: Standard genome sequence alignment tools primarily designed to find one alignment per read have difficulty 
detecting inversion, translocation and large insertion and deletion (indel) events. Moreover, dedicated split read alignment 
methods that depend only upon the reference genome may misidentify or find too many potential split read alignments 
because of reference genome anomalies.  
Methods: We introduce MUMdex, a Maximal Unique Match (MUM)-based genomic analysis software package consisting 
of a sequence aligner to the reference genome, a storage-indexing format and analysis software. Discordant reference 
alignments of MUMs are especially suitable for identifying inversion, translocation and large indel differences in unique 
regions. Extracted population databases are used as filters for flaws in the reference genome. We describe the concepts 
underlying MUM-based analysis, the software implementation and its usage.  
Results: We demonstrate via simulation that the MUMdex aligner and alignment format are able to correctly detect and 
record genomic events. We characterize alignment performance and output file sizes for human whole genome data and 
compare to Bowtie 2 and the BAM format. Preliminary results demonstrate the practicality of the analysis approach by 
detecting de novo mutation candidates in human whole genome DNA sequence data from 510 families. We provide a 
population database of events from these families for use by others. 
 
Availability:	http://mumdex.com/	
Contact:	andrewsp@cshl.edu (or paa@drpa.us)	
Supplementary information:	Supplementary data are available online. 

 
 
1 Introduction  
Standard genome sequence alignment tools, such as Bowtie 2 
(Langmead et al., 2012) or BWA (Li, Durbin, 2009a), are primarily 
designed to find one alignment per read while allowing for soft clipping, 
base substitutions and small insertions and deletions (indels). Existing 
analysis software for detecting structural variants typically starts with 
conventional alignment tools, and then looks for either discordant read 
pair mates (Chen et al., 2009; Lindberg et al., 2015) or split read align-
ments (Karakoc et al., 2012; Ye et al., 2009) with read pair mate support. 
Discordant read pair analysis methods have trouble identifying precise 
breakpoints and identifying small indels, while split read methods are 
limited to smaller indels if the underlying aligner allows for non-unique 
or mutated alignments, since the number of possibilities for alignment 
would then be too large. 

We introduce MUMdex, a Maximal Unique Match (MUM)-based ge-
nomic analysis software package for sequence analysis. A MUM be-
tween two sequences is defined as an exact match subsequence that 
exists only once in each sequence (is unique) and is not part of any long-
er exact match (is maximal). Finding MUMs is computationally rapid 
and allows us to find all the MUMs between billions of short sequencing 
reads and the large human reference genome. Pairs of MUMs within a 
read that have incompatible reference coordinates are starting points for 
inference about sequence structure. MUMdex software allows events of 
any size to be confidently detected. 

The MUMdex aligner saves read pair information in an indexed loss-
less compact binary format as MUMs plus the sequence not covered by 
MUMs. This format facilitates subsequent searching for genomic rear-
rangements of all kinds by inspecting each pair of MUMs (called a 
‘bridge’) within a read. MUMdex analysis software computes a numeri-
cal ‘invariant’ for each bridge. When bridge invariants occur with non-
zero values, and are seen in multiple independent reads, they signal 
either genome rearrangements (inversions, translocations or indels) or 
problems in the reference genome. By comparing the bridge invariants 
from cancer to normal from the same individual, or from an individual to 
its parents or to populations, most errors caused by the imperfect refer-
ence genome can be eliminated, thus reliably detecting de novo and rare 
rearrangements of any size. MUMdex analysis software can also detect 
single nucleotide polymorphisms (SNPs), but it is expected to underper-
form standard methods for detection in regions of high divergence from 
the reference genome. 

2 Methods 
The core of our method is the ‘bridge invariant’ that is associated with 
differences between sample and reference genomes. Imagine any ge-
nomic rearrangement in which one unique piece of the genome is joined 
to another unique piece. Each piece has coordinates in a reference ge-
nome, and these coordinates can be extended locally to adjacent base 
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pairs even beyond the join. There are two such coordinate extensions at 
every base. These coordinates will conflict, but either the difference or 
the sum of the two coordinates at each base will have the same nonzero 
value. The event type dictates whether it is the difference or the sum that 
produces the constant. We call this constant the ‘bridge invariant’. 

The invariant can be computed from any sequence read that spans the 
join with enough sequence to establish MUMs on either side of the join. 
The properly computed invariant will be independent of the strand of the 
read, the start position of the read, the read length, or base calling errors. 
The computation will be dependent on the reference coordinate system 
and so where the reference assembly reflects a minor variant in the hu-
man population there will be an associated nonzero bridge invariant in 
most individuals. For this and other reasons, we construct a database 
containing nonzero invariants associated with locations from normal 
genomes. This database is helpful as a filter for events, whether we seek 
differences between a cancer and the host normal or between a child and 
its parents. 

2.1 MUMs, Anchors, Bridges and Invariants 
A read is evidence for the sequence structure of the sampled genome (see 
Figure 1). Most reads will contain one or more MUMs to the reference 
genome, aligning either in its 5’ to 3’ orientation (‘forward’) or in its 
reverse complement (‘reverse’). If a MUM terminates within but not at 
the edge of a read, the final base of the MUM at that termination point is 
called an ‘anchor’. Every anchor inherits from its MUM a reference 
genome coordinate, the ‘anchor position’. An anchor with the lowest 
reference coordinate in the MUM is called the ‘low’ anchor while one 
with the highest is called the ‘high’ anchor. The presence of an anchor 
means that the read is not entirely consistent with the reference genome. 
The sequence adjacent to an anchor but outside the MUM is either a 
sequence error or a true difference between the sample and the reference. 
 

 

Figure 1. MUMs, bridges and anchors. A ‘reference’ genome, a ‘sample’ ge-
nome with an inversion event and a read from the sample are shown. The sequence 
CCCCTC on the forward (+) strand of the reference genome has been replaced by 
its reverse complement of GAGGGG in the sample. The read is a subsequence of 
the sample genome forward strand. The left red underlined MUM and right blue 
underlined MUM form a bridge, depicted as a bracket on top of the MUMs. Low 
and high MUM anchor locations and alignment orientations are labeled on the 
bottom. The right MUM has no high anchor because it terminates at the edge of the 
read. The low anchors are the bridge anchors for this bridge. 

We call any pair of MUMs in a read a ‘bridge’. The MUMs of a 
bridge may overlap, abut or have a gap between them in the read. The 
‘bridge anchors’ are the ‘left bridge anchor’ (the right anchor of the left 
MUM) and the ‘right bridge anchor’ (the left anchor of the right MUM). 

If not due to sequence error, bridges arise from substitutions, indels, 
inversions or translocations, and these types can be distinguished by 
bridge invariants, as we now discuss. 

A bridge can be characterized by the bridge anchor ‘offset’, which is 
the right bridge anchor read coordinate minus the left bridge anchor read 
coordinate. The offset is positive if the MUMs do not overlap. It is also 
characterized by the bridge anchor types (low or high) and the genomic 
coordinates of the bridge anchors. In the absence of read error, these 
characteristics together with any sequence separating the MUMs unique-
ly characterize an event: the characteristics are unaffected by differences 
in read strand, read length and read placement. For example, the lengths 
of the bridge MUMs do not affect the bridge characteristics.  

However, to obtain a characteristic that is not sensitive to substitution 
error, and that can be used between individuals who might differ by 
SNPs, we need something stronger, the bridge invariant. The bridge 
invariant plays a critical role when we search for structural genomic 
variation. 

The bridge invariant is calculated from the other bridge characteris-
tics, but is not sensitive to substitution read error or substitution poly-
morphisms. The invariant also is useful for typing an event, and, for 
simple events, measuring its size.  

To calculate the bridge invariant, we begin by picking any base posi-
tion b with a read coordinate Rb within MUM m. Based on the alignment 
of the MUM to the reference genome, b has a unique genome coordinate 
Gm,b. Now consider any read position x with read coordinate Rx. The 
MUM m induces a MUM-genome coordinate for that position, Gm,x, 
namely 
 𝐺",$ = 𝐺",& + 𝐴(𝑅+ − 𝑅&) (1) 
where A is +1 for forward MUMs and −1 for reverse MUMs. 

Note that Gm,x will be independent of the choice of b. Let n be the oth-
er MUM. Then, up to a sign, the bridge invariant I is evaluated at any 
base x as the difference of the m- and n- genome coordinates when m and 
n have the same orientation (forward or reverse), and the sum of the 
coordinates if they have different orientations. To resolve the ambiguity 
in sign when computing we use this formulation for the bridge invariant: 
 𝐼 = 	 𝑆"𝐺",$ + 	𝑆1𝐺1,$  (2) 
where for each MUM j, Sj is −1 for a MUM if it has a low bridge anchor 
and +1 if it has a high bridge anchor. Therefore, the invariant is 0 if the 
bridge is caused by base substitutions, negative if caused by deletions 
and positive if caused by insertions. For indels the absolute value indi-
cates the length of the event. Figure 2 shows an example of an invariant 
calculation for a small insertion event. 
 

 

Figure 2. Computing the invariant. A reference genome and an insertion event in 
a read are shown. Genomic coordinates are displayed in black underneath the 
reference sequence. The sequence AC has been inserted into the sample genome 
between positions 10 and 11 of the reference genome. A read from the sample 
genome is shown, with read coordinates displayed underneath in red. Dotted and 
dashed lines colored the same as each underlined MUM in the bridge demonstrate 
the genomic coordinates induced by the MUMs on the read at the first base of each 
MUM. The coordinates induced on the read by the MUMs are displayed under-
neath the read in yellow and blue, and note that the difference in the two coordinate 

reference:
+ACGTCCCCTCT T ACGT ACGT
- TGCAGGGGAGAA TGCA TGCA
sample:
+ACGTGAGGGGT T ACGT ACGT
- TGCACTCCCCAA TGCA TGCA

inversion event

read:
GTGAGGGGT T ACGT AC

bridge

high reverse low low forward

reference:
ACGTCCCCCCT T ACGT ACGT
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

read:
TCCCCCCACT T ACGT A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16read coord:
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19left MUM coord:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17right MUM coord:
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systems is a constant. Arbitrarily choosing x as the first base of the right MUM 
(position 10 in the read coordinates) to evaluate the genomic coordinates induced 
by both MUMs, we note that the left MUM with a high bridge anchor induces 
coordinate 13 (yellow) and the right MUM with a low bridge anchor induces coor-
dinate 11 (blue), so the bridge invariant is +13 + -11 = 2 according to Equation 2. 

2.1.1 Spurious MUMs 

Both read error and real events can create novel sequence that by chance 
matches uniquely to a completely unrelated portion of the genome. We 
call these chance matches spurious MUMs. All aligners encounter spuri-
ous alignments but they are typically filtered out on the fly with some 
degree of success. In contrast, MUMdex retains all MUMs passing op-
tional filters because even spurious MUMs can signal actual events. For 
example, a MUM, even if spurious, seen recurrently in one child but not 
in either parent may suggest a real de novo event. 

To quantify the occurrence of spurious MUMs due to read error, we 
used the MUMdex aligner (described later in Software) to align 100 
million 151 base long simulated reads containing one centered single 
base substitution between unique sequences from the hg19 human refer-
ence genome. In addition to finding the two expected MUMs, we also 
found on average 6.02 (unfiltered) spurious MUMs per read. With sim-
ple filters we do much better. First, by requiring that every MUM be at 
least 20 bases long, 85.3 percent of spurious MUMs are eliminated. 
Secondly, we define ‘excess mappability’ as the length of a MUM minus 
the minimum length required to achieve uniqueness for a subsequence 
within the MUM. Just requiring MUMs to have an excess mappability of 
2 or more eliminates 89.2 percent of spurious MUMs. Additional filters, 
such as requiring that supporting MUMs be seen on read pair mates can 
also help to reduce spurious MUM contamination of called events. 

2.1.2 Bridges and Invariants for Selected Event Types 

Substitutions, deletions and insertions of any length, inversions and 
translocations can be identified by their distinctive bridge characteristics. 
A guide to the bridge structures for these types of events is tabulated in 
Supplementary Figure 1. 

Bridges bracketing sequence substitutions have similarly oriented 
MUMs and a zero invariant. Bridges for deletion events have similarly 
oriented MUMs but a negative invariant equal to the length of the delet-
ed sequence. These are the simplest events. 

A simple tandem duplication may result in a single bridge with an in-
variant equal to the length of the duplicated sequence. Many more com-
plications can arise from microsatellite expansion and contraction. 

A non-tandem insertion event may result in up to three bridges. One 
bridge spanning the insertion will have similarly oriented MUMs and a 
positive invariant equal to the inserted sequence length. If the inserted 
piece contains a MUM, two other bridges are generated: one from the 
left flank to the inserted sequence; and one from the inserted sequence to 
the right flank. Those bridge invariants are more like those from translo-
cations, and do not have quantitative interpretation. Of course, if an 
insertion is too large, the first type of bridge might not be observed. 
Instead, bridges at the junctions may be observed separately. 

Inversion events can produce a distinctive signature: similar absolute 
value positive and negative invariants located nearby, with absolute 
value close to twice the local genomic coordinate. If a perfectly inverted 
sequence (no removal or addition of bases) is short enough to be brack-
eted by MUMs in a read, the inverted sequence acts as a substitution so 
the bracketing bridge will have zero invariant. We use an expansive 
definition of inversion throughout this paper, calling any bridge with two 
MUMs on the same chromosome but aligning to opposite strands an 
inversion. 

Translocations are defined as bridges with MUMs on different chro-
mosomes that cannot be identified as part of an insertion event. Translo-
cations are expected to be rare, but most bridges resulting from spurious 
MUMs will be cross-chromosome. Translocations are therefore suspect 
and may require more evidence, such as increased excess mappability, 
more read pair mate support, and the absence of the event in the popula-
tion database.  

2.2 MUM-Based Analysis  

2.2.1 Searching for de novo events 

To illustrate how we use the processing (storage and analysis) system we 
have created, we consider a particular application, one of many, the 
occurrence of a de novo structural event. The signature for such an event 
is clear: we find in the child bridges in multiple reads each at the same 
location and with the same nonzero invariant, and not in the parents 
despite high depth of coverage at the same location. The data structures 
we build are designed to facilitate such searches. We continue to refer to 
this application in the following. 

2.2.2 Recurrence and coverage, operational conditions 

Under operating conditions, base-calling errors will be common, cov-
erage may be variable, and peculiarities in the reference genome relative 
to the child all can cause misinterpretation of data. In this section we 
discuss these, and explain the auxiliary features of the processing that 
lessen their impact. We introduce the notions of ambient coverage, an-
chor counts, support from paired end alignment, and so on. These lead to 
quantitative filters that can be applied with varying degrees of stringen-
cy. 

Base calling errors may cause misalignment and result in spurious 
MUMs and invariants. Fortunately, most read errors are not recurrent, so 
we can set as a requirement a threshold for number of recurrent invari-
ants. We count invariants by read pair; if an invariant was seen in both 
mates for a read pair it is counted only once. 

Similarly, coverage is important in the parents. If we fail to see the in-
variant in one of the parents, it could be a failure of coverage or merely 
the result of under-sampling. Although this is unavoidable on occasion, 
we take several steps to guard against it. First, we define ‘ambient cover-
age’ of a genomic position for a sample as how many read pairs in the 
sample contain a MUM that is at least 25 bases long (to exclude most 
spurious MUMs) that covers the position. We require that the ambient 
coverage at both bridge anchor positions of the event in both parents 
exceed a reasonably large threshold. 

Second, we check for isolated bridge anchors in the parents, to see if 
the adjacent sequence is mostly compatible with the child’s consensus 
sequence for the event. This allows us to disqualify events as de novo if 
the parent had the event but one of the MUMs is not present due to base 
calling error, somatic mutation or just being cut off at the end of a read. 

Additionally, we search for bridges in a larger population, because ob-
serving the same bridge in the general population can be taken as evi-
dence that the event is common, and merely missed in one of the parents. 
Moreover, bridges that are highly common in certain regions may indi-
cate potential flaws in the reference genome, or else regions that are not 
stable during library preparation. It is important to note, however, that 
certain regions of the genome may be highly unstable within the 
germline or somatic cells of the individual as we shall discuss later. 

We also seek to determine that the bridge MUMs in the child them-
selves are long enough that a single nucleotide polymorphism in the 
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region does not cause recurrent spurious alignment. Along the same 
lines, we seek in the paired reads evidence that the sequences adjacent to 
an event are consistent with our interpretation of the event, for example 
that the right paired read is consistent with the rightmost MUM align-
ment. We therefore require that each MUM in a bridge has consistent 
read pair mate support in at least one read pair. 

3 Software 
The MUMdex package consists of an aligner, an alignment format, anal-
ysis software and a portable population database of common structural 
variants to aid filtering. The MUMdex alignment format contains all 
MUM alignments to the reference found in read pairs, indexes read pairs 
by the genomic coordinates of their MUMs, and is able to reconstitute 
input read pair sequences. MUMdex analysis software examines MUM-
dex alignment files for a population to detect rare and de novo mutation 
candidates. 

MUMdex software is written in C++ for the C++14 (ISO/IEC, 2014) 
standard but is also compilable using C++11. It has been tested most 
fully using the GCC compiler version 4.9.2 in the Linux operating sys-
tem. Considerable attention was paid to output format compactness and 
analysis efficiency. There is also an optional Python wrapper which can 
run the MUMdex aligner and allows complete access to the MUMdex 
alignment format. 

3.1 The MUMdex Aligner  
The MUMdex aligner (mummer) uses a suffix array (Manber et al., 
1993) and Longest Common Prefix (LCP) array (Kasai et al., 2001) to 
efficiently find a variant of a MUM where the sequence may be repeated 
in the query. This variant (called a maximal almost unique match, or 
MAM) allows for discovery of tandem duplications in addition to all 
other mutation types such as SNPs, indels of any size, inversions and 
translocations. 

The MUMdex aligner does not utilize base quality score information 
generated by the sequencing instrument. A reasonable pre-processing 
step prior to MUMdex alignment (that we do not perform) would be to 
clip the ends of reads if quality scores become unacceptable. 

The MUMdex aligner borrowed the suffix array implementation of the 
sparseMEM package (Khan et al., 2009) and extensively modified it to: 

• provide object-oriented interfaces and increase parallelism 
• remove sparse feature to boost speed and lower complexity 
• remove a genome length limitation of 2.147 billion bases 

• allow saving and regular or memory-mapped loading of a 
binary reference and the suffix array and LCP structures 

• read query input in the SAM (Li et al., 2009b) or FASTQ 
(Cock et al., 2010) formats 

• optionally pass through quality scores and SAM fields 
• eliminate multiple parsing of query input 
• align to the reference and its reverse complement 
• save sequences and alignments in the MUMdex format 

The MUMdex aligner will automatically generate and save the binary 
reference, suffix array and LCP array if they do not yet exist. The suffix 
array generation process for a human reference genome requires less 
than 32 GB of physical memory and may take several hours. Subsequent 
memory-mapped use of the suffix array and associated structures is 
capable of performing alignment with only a few GB of physical 
memory, but will proceed much more efficiently if at least 32 GB of 
physical memory is available. Optional simultaneous alignment (produc-
ing identical output) to the reference and its reverse complement requires 
120 GB of memory but is 3x faster. 

The MUMdex aligner outputs the MUMdex format directly in a set of 
separate MUMdex format subdirectories of fixed maximum number of 
read pairs, pre-sorted to put likely duplicate read pairs adjacent to each 
other. The program merge_mumdex merges the MUMdex parts into a 
single MUMdex output directory, marks duplicate read pairs, generates 
and saves the genome order MUM index and then removes the MUMdex 
parts (Supplementary Figure 2). 

3.2 The MUMdex Alignment Format  
The MUMdex alignment format stores read pair, MUM and sequence 
information in memory or in files as arrays of POD (Plain Old Data) 
C++ objects in native binary format (Figure 3). This means the output 
format may not be portable between different machine architectures or 
compilers, but data access can be very fast. 

All MUMs for a read pair are stored in a block and the MUM blocks 
and sequence information are stored in the same order as the read pairs. 
All information for each read pair can therefore be very efficiently 
streamed into memory (using memory-mapped files). An index enables 
optional traversal of all MUMs and the associated read pair information 
over a region, but this method is not advised for traversing all MUMs or 
read pairs because the resulting memory access patterns are inefficient. 

Information for each MUM is stored in 8 bytes of space. This includes 
the MUM chromosome (8 bits: up to 255), chromosomal position (32 

 

 

Figure 3. Topology of the MUMdex alignment format. The MUMdex object contains 5 arrays of objects. Arrows at the left show the direction of linkage between objects 
depicted as dotted lines. The pairs array stores pair objects, sorted by the lowest reference coordinate of the first MUMs in each mate. Pair objects point to their associated 
bases object and the first MUM in the pair. According to this scheme, pairs 5 and 6 in the diagram have no MUMs while pair 2 has 3 MUMs. MUM index objects point to 
MUMs via their pairs (full linkage not shown) and are sorted in genome order for the MUMs they point to. The bases array stores one bases object for each pair to encode 
pair sequence not covered by MUMs. If the sequence is too long to fit in a bases object, the bases object points to a block in the extra array to store the sequence. 

 

MUMdex

index
mums
pairs
bases
extra

index 1 index 2 index 3 index 4 index 5 index 6 index 7 index 8 index 9 index 10 index 11 index 12

MUM 1 MUM 2 MUM 3 MUM 4 MUM 5 MUM 6 MUM 7 MUM 8 MUM 9 MUM 10 MUM 11 MUM 12

pair 1 pair 2 pair 3 pair 4 pair 5 pair 6

bases 1 bases 2 bases 3 bases 4 bases 5 bases 6

b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9 b 10 b 11 b 12 b 13 b 14 b 15 b 16 b 17 b 18 b 19 b 20 b 21 b 22 b 23 b 24 b 25
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bits: up to 4.29 billion), MUM length and offset in read (10 bits: up to 
1023), plus bits for MUM alignment strand, whether the MUM is on read 
1 or read 2, if the MUM is the last MUM in a read pair and if the MUM 
touches the end of the read. 

Read pair information is stored in 8 bytes of space. This includes the 
index of the first MUM in the read pair (40 bits: up to 1 trillion), the 
length of each read (10 bits: up to 1023) and bits specifying if the read 
pair is marked as a duplicate, if the read pair contains MUMs, or if either 
read is marked as bad by either the sequencer or user software. 

Up to 21 bases of unaligned sequence is stored for each read pair in a 
bases object in 8 bytes of space. If more sequence storage space is need-
ed, the bases object instead contains a 63 bit index to a block in an over-
flow array encoding all excess sequence in 3 bits per base. 

The MUM index for genome ordered access uses 8 bytes per MUM 
for storing the read pair index (40 bits: up to 1 trillion) and the index of 
the MUM in the read pair (11 bits: up to 2047), with some space re-
served for optional applications. MUMs can be looked up by genome 
position in O(log N) time and genome position ranges can be traversed in 
O(R) time, where N is the number of MUMs in the MUMdex file and R 
is the number of MUMs in the range. 

Apart from the flags encoding duplicate and bad read status for a read 
pair, all MUMdex object access is read-only to prevent inadvertent cor-
ruption of data by user code. Pair, MUM and index objects and read 
sequences are accessed via the MUMdex object either by using integer 
array indices or by using iterators. MUMdex-related objects are laid out 
in memory and on disk as simple C++ structures, but access is granted 
only via overhead-free member functions. The MUMdex object also 
provides access to a reference object to query various aspects of the 
genome such as chromosome lengths and sequence. 

The format is designed for compactness without employing block 
compression, so entries can be quickly retrieved in random-access fash-
ion. With a minimum MUM length cutoff of 20, the MUMdex alignment 
format losslessly compresses real whole genome sequencing reads by 
about 2.7 times compared to the read sequences stored as ASCII text. 

3.3 MUMdex Analysis Software and Other Tools 
MUM-based analysis begins with one or more MUMdex alignment files. 
Depending upon project goals the approach taken will differ, but since 
the MUMdex aligner does not interpret read pairs but simply reports all 
MUMs found, the alignment format is a generally useful starting point 
for many types of analysis.  

We favor a bridge-based analysis method because it is essentially im-
mune to contamination from base substitution read error for non-SNP 
candidate types. Bridge-based analysis is performed using the bridges 
and population_bridges programs (Supplementary Figure 2). The bridges 
program summarizes information for each bridge observed over all read 
pairs for a sample and saves the summary by chromosome. The popula-
tion_bridges program looks for de novo candidates and/or events seen in 
a single family in a region of a chromosome over a population.  

Population-based analysis helps to filter false de novo candidates re-
sulting from anomalies in the genome reference, common events missed 
in the parents, and possibly genome regions of great instability. We have 
prepared a ‘portable’ population database for use by users processing a 
small number of families who do not have the resources to sequence 
additional samples. The database contains all bridges seen at least twice 
in a single individual from a collection of 1020 parents using the hg19 
reference, and is included with the Supplementary Materials. Justifica-
tion for the cutoff of a count of at least two is given in the results. 

Other tools distributed in the MUMdex package can be used to con-
vert between formats, facilitate different types of analysis or aid in the 
examination of MUMdex data: 

bridge_figure: create an event pdf with explanatory figures 
namepair: pairs reads in a SAM file by read name 
fastqs_to_sam: convert fastq files to a name paired SAM file 
count_anchors: count anchor and reference alleles for a sample 
show_all_counts: output anchor counts over a population 
anchor_repeatness: output repetitivity info for bridge anchors 
count_pseudogenes: find processed pseudogenes in a sample 
denovo_pseudogenes: find de novo candidates over population 
find_bridge: check samples or families for a specific bridge 
find_microsatellite: assess microsatellite status for a position 
mumdex2txt: convert a MUMdex alignment file to text format 
mumdex_sequences: output the sequence for each read pair 
mumdex2sam: convert MUMdex alignment file to SAM format 
show_mums: output MUM information in text format 
show_pairs: output read pair information in text format 
pair_view: text view of read pairs to visualize MUM alignments 
bridges2txt: convert bridges program output to a text format 
karyotype: create a karyotype figure with event histogram 
population_database: create a portable population database 
pop2txt: convert population database between binary and text 

4 Results 
We show that MUMdex software losslessly compresses simulated ge-
nomic sequence without error. We characterize performance using real 
whole genome data from 40 quad (mother, father, proband child and 
sibling) families of the Simons Simplex Collection (Fischbach et al., 
2010). We show that de novo indel and structural variation candidates 
can be found using whole genome data from 510 quad families from the 
same collection. 

4.1 Verification of MUMdex Correctness Via Simulation 
We processed reads from a simulated sample genome containing single 
base substitutions and structural variation to test the ability of the MUM-
dex aligner and alignment format to losslessly compress the input. Suc-
cess for this test is defined as being able to reconstruct the input se-
quence and read pair mate associations from the MUMdex alignment file 
while compressing the input sequence better than the gzip (Deutsch 
1996) algorithm does. 

To produce the simulated sample genome, we first concatenated all 
chromosomes of the hg19 human reference genome to produce a single 
sequence. We then introduced base substitutions across the genome with 
a probability of 0.001 per base. Finally, we introduced breaks between 
bases in the genome with a probability of 0.001, shuffled the resulting 
pieces and concatenated them to construct a new sequence. Given the 
reference genome length of slightly over 3.1 billion bases, this procedure 
resulted in a simulated sample genome with approximately 3.1 million 
base substitutions and 3.1 million junctions between sequences not nor-
mally adjacent in the human reference genome. 

We generated 151 base long paired reads by randomly generating po-
sitions in the simulated sample genome uniformly in the range [0, LG – 
LR), where LG is the genome length and LR is the read length, and extract-
ing the sequence starting at that position. We required that no read se-
quence selected was identical to any other read sequence to allow defi-
nite read identification during correctness testing. 100 million read pairs 
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were generated in this fashion for each of 10 runs for a total of 1 billion 
read pairs tested. 

We ran the MUMdex aligner with a minimum mum length filter of 20 
on each group of 100 million read pairs, and every time we were able to 
reconstruct all input read sequences from the MUMdex alignment file 
while maintaining the read pair mate associations. On average, the 
MUMdex alignment file is 4.8 times smaller than the simulated input 
read sequences stored one sequence per line as ASCII text and 1.4 times 
smaller than a gzip-compressed version of the same sequence file. 

4.2 Analysis Speed and Output Size Characteristics  
Alignment of 143 bp whole genome read pairs to the hg19 reference and 
its reverse complement using 12 threads runs at a rate of over 4.5 million 
read pairs per minute on Xeon E5-2690 processors with sufficient 
memory and large local Raid-5 SAS storage. Average processing times 
and storage space requirements for 160 such datasets processed in paral-
lel are shown in Table 1. 
 
Processing Step Time Output Size 

mummer 3.13 hours / sample 63.214 GB / sample 
(deleted by next step) 

merge_mumdex 3.86 hours / sample 118.034 GB / sample 

bridges 1.55 hours / sample 47.630 GB / sample 

population_bridges 11 hours elapsed 103 kB total 

analysis total  165.664 GB / sample 

Table 1. MUMdex time and space. Averages for processing 160 whole genome samples with 
no MUM length cutoff are shown. The average number of 143 bp read pairs per sample was 
439,296,367. The resulting alignment speed of 4.68 million reads per minute and the speed of the 
merge_mumdex and bridges steps were slower than optimal due to storage device contention 
from 20 compute nodes processing the samples in parallel. The mummer program used 12 
threads per node, bridges used 24 threads per node and the other programs were single threaded. 

 

We compared Bowtie 2 plus SAMtools sort operating as a pipeline 
with 200GB available for sorting to MUMdex using the same dataset and 
number of threads (12). We find that Bowtie 2 takes 13 hours versus 7 
hours for MUMdex with no MUM length cutoff. MUMdex saves ap-
proximately 8 times the number of alignments as Bowtie 2, yet the 
MUMdex output file is 2/3 the size of the Bowtie 2 BAM file. The 
MUMdex space advantage is a result of both the reference compression 
method used and the fact that MUMdex discards basecall quality score 
information. Operating MUMdex with a MUM length cutoff of 20 great-
ly reduces the time for the merge_mumdex step and the size of the 
MUMdex alignment file. 

Converting MUMdex output to BAM format results in a BAM file 
that is about 3% smaller than the MUMdex alignment file. Sequential 
access of the BAM file is approximately 50% faster than sequential 
MUMdex access. Random access, lookup by genomic position and espe-
cially gathering information for all alignments of a read pair are all much 
slower for the BAM format than for the MUMdex format. This is be-
cause BAM entries are variable sized objects embedded in indexed gzip-
compressed blocks that need to be decompressed and linearly searched 
for each access while the MUMdex format allows direct random access 
and keeps read pair information together instead of being interspersed as 
in a BAM file. 

4.3 Whole Genome De Novo Detection  
We used MUMdex to analyze whole genome sequence data generated 
from DNA extracted from whole-blood of 2040 individuals in 510 quads 

from the Simons Simplex Collection. The libraries had an average frag-
ment length of 362 bases and sequencing was performed in paired end 
mode to an average depth of coverage of 30. Of the 510 families, 40 
were amplified using PCR and had read lengths of 143 bases and the 
remainder used a ‘PCR-free’ method (Illumina, 2015) and had read 
lengths of 151 bases. We searched for de novo structural variations using 
stringent conditions. 

The stringency of the de novo candidate list is defined by setting 
thresholds for inclusion. We require that each candidate bridge be seen in 
at least 5 read pairs in a child. In the child, the lengths observed for each 
bridge MUM must be at least 25 with excess mappability of at least 1 in 
some read. A bridge with identical characteristics must not be present in 
the parents of the child, yet the ambient coverage must be at least 10 at 
both bridge anchor positions in both parents. We also eliminate events as 
de novo if for either bridge anchor in the child a parent has even one 
MUM with a coincident anchor and that parental MUM has sequence 
adjacent to the anchor nearly identical to the 10 base adjacent sequence 
of the child’s anchor. 

If a complex event generates multiple bridges, we attempt to retain on-
ly the ‘outermost’ of these bridges, meaning that the bridge MUMs must 
be compatible with the surrounding location. To achieve this, we require 
20 or more bases of additional support be seen in at least one mate in the 
correct orientation for each bridge MUM. 

To investigate the effectiveness of the population filter, we allowed 
the identical bridge characteristics to appear in up to four other families. 
We call those candidates with no identical bridge seen in any other fami-
ly the ‘strong’ de novo candidates. The other events we call ‘recurrent’. 
We detected 6278 de novo candidates in total, with 4740 being of the 
strong type. Of the strong candidates, 2376 were found in the proband, 
2336 were found in the unaffected sibling and 28 were shared between 
proband and sibling. Supplementary Figure 3 is a karyogram showing 
the positions of all anchors of strong candidates. At gross resolution, 
strong anchors have for the most part a uniform distribution of events 
over the genome with only a few hotspots and dead zones. 

The majority of strong events were short (< 10 bp) deletions, followed 
by short insertions, larger deletions and insertions, translocations, and 
even larger insertions and some inversions. Table 2 is a breakdown of 
observed event types and Supplementary Figure 4 is a histogram of the 
size distribution of smaller indel events.  

 
N Events Invariant (I) or Distance (D) Event Signature 

2054 2 <= |I| < 10 deletion 
1218 -1 deletion 
563 1 insertion 
401 2 <= |I| < 10 insertion 
305 10 <= |I| < 100 deletion 
109 10 <= |I| < 100 insertion 
24 1000 <= |I| < 10000 deletion 
20 100 <= |I| < 1000 deletion 
9 10000 <= |I| < 100000 deletion 
9 inter-chromosomal translocation 
7 100 <= |I| < 1000 insertion 
6 10000 <= |I| < 100000 insertion 
4 1000 <= |I| < 10000 insertion 
3 100000 <= |I| < 1000000 insertion 
2 1000000 <= |I| < 10000000 insertion 
2 100 <= D < 1000 inversion 
2 1000 <= D < 10000 inversion 
1 10 <= D < 100 inversion 
1 1000000 <= D < 10000000 inversion 

Table 2. Counts for event type and size range. Event sizes for strong de novo candidates are 
characterized by the invariant (I) for insertions and deletions and by the chromosomal distance 
(D) between bridge anchors for inversion events. 
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Events identified as translocations or very large inversions, deletions 
and insertions should be viewed with skepticism and be investigated in 
detail. We have examined most of these, and in many cases they arise 
from a small local de novo event, such as a substitution, which thereby 
created a spurious MUM, yet the event still passed all filters. Table 1 in 
the Supplementary Materials lists the properties of each event found in 
detail.  

4.4 Properties of recurrent events  
Limiting ourselves to strong candidates helps avoid calling a rare variant 
a de novo event when by chance it was missed in the parents. However, 
the same filter prevents us from identifying true de novos that are fre-
quently recurrent. Our full list of de novos contains an additional 1538 
candidates where the bridge was seen in up to 4 other families. 

Figure 4 is a scatter plot of the maximum bridge count seen in other 
families (which is zero if the event was seen in only one family) versus 
the candidate bridge count. It demonstrates that in the vast number of 
cases, the bridge was either not seen or was seen at a maximum count of 
1 in some other family. Events seen at a count of more than 1 in some 
other family show the expected roughly linear relationship between the 
candidate bridge count and the maximum other family bridge count. 
Events seen with a count greater than one in some other family also 
appear to transmit roughly as expected (Supplementary Figure 5), strong-
ly suggesting that they are not somatic mutations or artifacts of library 
preparation or sequencing platform. By contrast, almost all events seen at 
a maximum count of one in other families are not transmitted, and thus 
are either somatic mutation or an artifact of preparation or platform in 
those families. 

 

Figure 4. Maximum bridge counts. For every candidate de novo event (seen in a 
child, not its parents and fewer than five other families) we plot its bridge count on 
the X-axis vs. the maximum bridge count observed in any non-candidate family on 
the Y-axis. Jitter has been added to the counts to help separate overlapping points. 

The group of recurrent candidates (those seen with high bridge counts 
in other families) have significantly different properties than the strong 
candidates, and we believe these properties may have been the cause of 
much of the recurrence. As shown in Figure 5 Panel A, the offset be-
tween bridge anchor positions tends to be negative for events seen in 
more than one family. The effect is stronger still for events that are 
transmitted (Panel B). A negative offset means that the bridge MUMs 

have high overlap, which is expected for repeat expansion and contrac-
tion events and for non-allelic homologous recombination events. These 
observations are consistent with finding long repeats more frequently at 
the bridge anchor coordinates of recurrent de novos (see Supplementary 
Figure 7). 

 

Figure 5. Offsets for recurrent and non-recurrent candidates. Negative offset 
values indicate that the bridge MUMs overlap each other. In blue in both panels we 
see a normalized histogram of anchor read offsets of strong de novo candidates. 
Panel A shows a normalized histogram of anchor read offsets for candidates seen 
in from two to five families (red). The area in common between the two histograms 
is displayed in purple. Panel B shows a normalized histogram of anchor read offset 
for candidates seen in at least two members, each at a count of at least two, in 
another family (red), a proxy for transmission.  

The interpretation of Figure 4 provides the justification for the bridge 
inclusion criteria in our portable population database, where we only 
include a bridge if seen at least twice in at least one individual. A scatter 
plot of invariant vs position for indels from the portable database is 
shown in Supplementary Figure 6 for a typical one megabase region. 
Clearly, the aggregate events in the human population show a highly 
structured distribution, mostly reflecting the repeat structure in the ge-
nome.  

The ~250 to 700 base long deletion events in Supplementary Figure 6 
seen ubiquitously in the population filter demonstrate its utility. As dis-
cussed in the figure caption, these apparent ‘deletions’ are predominantly 
a matter of library preparation, present at ~25 fold the incidence in the 
‘PCR-free’ libraries than in the conventionally prepared libraries. They 
are recurrent artifacts caused by the PCR-free sequencing method, and 
the recurrence filter effectively rejects them as de novo events.  

5 Discussion 
Specific gross changes in genome structure and copy number have long 
been known to be the cause of various syndromes (Lejeune et al., 1963; 
Lupski et al., 1991) and play a major role in cancer (Lugo et al., 1990; 
Slamon et al., 1989). Structural variation in the human genome will 
surely play a large role in our ultimate understanding of evolution, hered-
ity and disease. Yet, the reference genome sequence assembly is weakest 
where variation of this type is greatest, and its analysis is far from com-
plete. Analytic tools are critically needed now that thousands of deep 
whole genome sequences are becoming available. We offer MUMdex as 
one such tool. 

. CC-BY-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/078261doi: bioRxiv preprint first posted online Sep. 30, 2016; 

http://dx.doi.org/10.1101/078261
http://creativecommons.org/licenses/by-nd/4.0/


P. Andrews et al. 

Several key features distinguish MUMdex from other analysis meth-
ods. MUMdex uses only unique matches to a reference genome assem-
bly. MUMdex saves all MUMs and unaligned sequence to create a gen-
eral-purpose sequencing run index, delays the interpretation of reads 
until all information is available, characterizes events by their bridge 
coordinates and invariants and, additionally, uses a population to help 
filter events. The population database aspect of MUMdex analysis helps 
avoid false events due to an imperfect reference genome and fully utiliz-
es the large family-based WGS datasets available to us from the SSC 
(Fischbach et al., 2010). 

The extensive use of maximum unique matches (MUMs) is a choice 
that places MUMdex at an extreme point in a space of computational 
tradeoffs. We contrast it to other methods with anchor finding techniques 
that permit multiple or mutated matches to the genome, which are lim-
ited to local genome searches (and hence the discovery of only small-
scale structural variation) because otherwise there are too many possi-
bilities. What is lost for MUMdex in the tradeoff is the ability to identify 
events in duplicated regions or in regions highly divergent from the 
reference assembly. Care must also be taken when interpreting MUMdex 
events, as the true nature of an event may not be obvious. For instance, 
an event with the signature of a translocation may actually be a SNP that 
induced a spurious MUM to a distant but similar sequence.  

In this manuscript we have presented MUMdex software and de-
scribed the principles behind our analysis, to make it available for use by 
the community at large. We have used MUMdex to explore de novo 
structural variation in a large population. We have made a ‘portable’ 
database of structural variants and recurrent spurious events available for 
anyone seeking to use our software but who does not have access to 
large family databases. 

While we are working on validating these preliminary results in the 
context of autism studies, the broad outline of what we have found so far 
is likely to survive any validations. There is no bias to discovery of ‘lo-
cal’ events by MUMdex, yet most events are small deletions and inser-
tions, with frequency decreasing as event size increases. We observe that 
recurrent events are more likely to be found in repetitive regions, and 
these regions are likely to be inherently unstable.  

In addition to extensive validation, in our future work we will refine 
criteria for filtering de novo events, explore regions of genome instabil-
ity, and craft ‘interpretative’ tools, such as the bridge_figure program 
mentioned in Software (see Supplementary Figure 8), that allow the 
manual inspection of events. 

Acknowledgements 
We thank all the families at the participating Simons Simplex Collection (SSC) 
sites, as well as the principal investigators (A. L. Beaudet, R. Bernier, J. Constanti-
no, E. H. Cook Jr, E. Fombonne, D. Geschwind, D. E. Grice, A. Klin, D. H. 
Ledbetter, C. Lord, C. L. Martin, D. M. Martin, R. Maxim, J. Miles, O. Ousley, B. 
Peterson, J. Piggot, C. Saulnier, M. W. State, W. Stone, J. S. Sutcliffe, C. A. Walsh 
and E. Wijsman) and the coordinators and staff at the SSC sites for the recruitment 
and comprehensive assessment of simplex families; and the SFARI staff for facili-
tating access to the SSC. 

Funding 
This work was supported by grants to M. Wigler from the Breast Cancer Research 
Foundation and from the Simons Foundation Autism Research Initiative 
(SF235988). 
	
Conflict	of	Interest:	none	declared. 

References 
Cerf V. (1969) ASCII format for Network Interchange, Network Working Group 

RFC, 20, Retrieved from http://www.faqs.org/rfcs/rfc20.html 
Chen K, Wallis J, McLellan M, Larson D, Kalicki J, Pohl C, McGrath S, Wendl M, 

Zhang Q, Locke D, Shi X, Fulton R, Ley T, Wilson R, Ding L, Mardis E 
(2009) Breakdancer: an algorithm for high-resolution mapping of genomic 
structural variation, Nature Methods, 6 (9), 677-684 

Cock P, Fields C, Goto N, Heuer M, Rice P. (2010) The Sanger FASTQ file format 
for sequences with quality scores, and the Solexa/Illumina FASTQ variants, 
Nucleic Acids Research, 6, 1767-1771 

Deutsch P. (1996) GZIP file format specification version 4.3, Network Working 
Group RFC, 1952, Retrieved from https://tools.ietf.org/html/rfc1952 

Fischbach GD, Lord C. (2010) The Simons Simplex Collection: a resource for 
identification of autism genetic risk factors. Neuron, 68 (2), 192-195 

Illumina. (2015) TruSeq DNA PCR-Free Library Prep Reference Guide. Part # 
15036187 Rev. D Catalog # FC-121-9006DOC 

International Organization for Standardization (ISO). (2014) ISO International 
Standard ISO/IEC 14882:2014(E) - Programming Language C++. Retrieved 
from http://isocpp.org/std/the-standard 

Karakoc E, Alkan C, O’Roak B, Dennis M, Vives L, Mark E, Rieder M, Nickerson 
D, Eichler E. (2012) Detection of structural variants and indels within exome 
data. Nature Methods, 9 (2), 176-180 

Kasai T, Lee G, Arimura H, Arikawa S, Park K. (2001) Linear-Time Longest- 
Common-Prefix Computation in Suffix Arrays and Its Applications, Proceed-
ings of the 12th Annual Symposium on Combinatorial Pattern Matching, Lec-
ture Notes in Computer Science 181-192 

Khan Z, Bloom JS, Kruglyak L, Singh M. (2009) A practical algorithm for finding 
maximal exact matches in large sequence datasets using sparse suffix arrays, 
Bioinformatics, 25 (13), 1609-1616 

Langmead, B, Salzberg S. (2012) Fast gapped-read alignment with Bowtie 2, 
Nature Methods, 9 (4), 357-359 

Lejeune J, Lafourcade J, Berger R, Vialatte J, Boeswillwald M, Seringe P, Turpin 
R. (1963). 3 Cases of partial deletion of the short arm of chromosome 5. C. R. 
Hebd. Seances Acad. Sci. (in French). 257: 3098–3102. 

Li H, Durbin R. (2009) Fast and accurate short read alignment with Burrows-
Wheeler transform, Bioinformatics, 25 (14), 1754-1760 

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis 
G, Durbin R, 1000 Genome Project Data Processing Subgroup. (2009) The Se-
quence Alignment/Map format and SAMtools, Bioinformatics, 25 (16), 2078-
2079 

Lindberg M, Hall I, Quinlan A. (2015) Population-based structural variation dis-
covery with Hydra-Multi, Bioinformatics, 31 (8), 1286-1289 

Lugo TG, Pendergast AM, Muller AJ, Witte ON. (1990) Tyrosine kinase activity 
and transformation potency of bcr-abl oncogene products. Science. 247:1079-
1082. 

Lupski JR, De Oca-Luna RM, Slaugenhaupt S, Pentao L, Guzzetta V, Trask BJ, 
Saucedo-Cardenas O, Barker DF, Killian JM, Garcia CA, Chakravarti A, Patel 
PI. (1991) DNA duplication associated with Charcot-Marie-Tooth disease type 
1A. Cell. 66: 219-232. 

Manber U, Myers G. (1993) Suffix Arrays: A New Method for On-Line String 
Searches, SIAM Journal on Computing 22 (5) 935 

McKinney EH. (1966) Generalized Birthday Problem, American Mathematical 
Monthly, 73, 385-387 

Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin W, 
Stuart S, Udove J, Ullrich A, Press M. (1989) Studies of the HER-2/neu proto-
oncogene in human breast and ovarian cancer. Science 244: 707–712. 

Ye K, Schulz M, Long Q, Apweiler R, Ning Z. (2009) Pindel: a pattern growth 
approach to detect break points of large deletions and medium sized insertions 
from paired-end short reads, Bioinformatics, 25 (21), 2865-2871 

. CC-BY-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/078261doi: bioRxiv preprint first posted online Sep. 30, 2016; 

http://dx.doi.org/10.1101/078261
http://creativecommons.org/licenses/by-nd/4.0/

