

MUMdex: MUM-based structural variation detection
Peter A. Andrews1,∗, Ivan Iossifov1,2, Jude Kendall1, Steven Marks1,
Lakshmi Muthuswamy2, Zihua Wang1, Dan Levy1 and Michael Wigler1

1Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA,
2New York Genome Center, New York, NY 10013, USA.

*To whom correspondence should be addressed.

Abstract
Motivation: Standard genome sequence alignment tools primarily designed to find one alignment per read have difficulty
detecting inversion, translocation and large insertion and deletion (indel) events. Moreover, dedicated split read alignment
methods that depend only upon the reference genome may misidentify or find too many potential split read alignments
because of reference genome anomalies.
Methods: We introduce MUMdex, a Maximal Unique Match (MUM)-based genomic analysis software package consisting
of a sequence aligner to the reference genome, a storage-indexing format and analysis software. Discordant reference
alignments of MUMs are especially suitable for identifying inversion, translocation and large indel differences in unique
regions. Extracted population databases are used as filters for flaws in the reference genome. We describe the concepts
underlying MUM-based analysis, the software implementation and its usage.
Results: We demonstrate via simulation that the MUMdex aligner and alignment format are able to correctly detect and
record genomic events. We characterize alignment performance and output file sizes for human whole genome data and
compare to Bowtie 2 and the BAM format. Preliminary results demonstrate the practicality of the analysis approach by
detecting de novo mutation candidates in human whole genome DNA sequence data from 510 families. We provide a
population database of events from these families for use by others.

Availability:	http://mumdex.com/	
Contact:	andrewsp@cshl.edu (or paa@drpa.us)	
Supplementary information:	Supplementary data are available online.

1 Introduction
Standard genome sequence alignment tools, such as Bowtie 2
(Langmead et al., 2012) or BWA (Li, Durbin, 2009a), are primarily
designed to find one alignment per read while allowing for soft clipping,
base substitutions and small insertions and deletions (indels). Existing
analysis software for detecting structural variants typically starts with
conventional alignment tools, and then looks for either discordant read
pair mates (Chen et al., 2009; Lindberg et al., 2015) or split read align-
ments (Karakoc et al., 2012; Ye et al., 2009) with read pair mate support.
Discordant read pair analysis methods have trouble identifying precise
breakpoints and identifying small indels, while split read methods are
limited to smaller indels if the underlying aligner allows for non-unique
or mutated alignments, since the number of possibilities for alignment
would then be too large.

We introduce MUMdex, a Maximal Unique Match (MUM)-based ge-
nomic analysis software package for sequence analysis. A MUM be-
tween two sequences is defined as an exact match subsequence that
exists only once in each sequence (is unique) and is not part of any long-
er exact match (is maximal). Finding MUMs is computationally rapid
and allows us to find all the MUMs between billions of short sequencing
reads and the large human reference genome. Pairs of MUMs within a
read that have incompatible reference coordinates are starting points for
inference about sequence structure. MUMdex software allows events of
any size to be confidently detected.

The MUMdex aligner saves read pair information in an indexed loss-
less compact binary format as MUMs plus the sequence not covered by
MUMs. This format facilitates subsequent searching for genomic rear-
rangements of all kinds by inspecting each pair of MUMs (called a
‘bridge’) within a read. MUMdex analysis software computes a numeri-
cal ‘invariant’ for each bridge. When bridge invariants occur with non-
zero values, and are seen in multiple independent reads, they signal
either genome rearrangements (inversions, translocations or indels) or
problems in the reference genome. By comparing the bridge invariants
from cancer to normal from the same individual, or from an individual to
its parents or to populations, most errors caused by the imperfect refer-
ence genome can be eliminated, thus reliably detecting de novo and rare
rearrangements of any size. MUMdex analysis software can also detect
single nucleotide polymorphisms (SNPs), but it is expected to underper-
form standard methods for detection in regions of high divergence from
the reference genome.

2 Methods
The core of our method is the ‘bridge invariant’ that is associated with
differences between sample and reference genomes. Imagine any ge-
nomic rearrangement in which one unique piece of the genome is joined
to another unique piece. Each piece has coordinates in a reference ge-
nome, and these coordinates can be extended locally to adjacent base

. CC-BY-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/078261doi: bioRxiv preprint first posted online Sep. 30, 2016;

http://dx.doi.org/10.1101/078261
http://creativecommons.org/licenses/by-nd/4.0/

P. Andrews et al.

pairs even beyond the join. There are two such coordinate extensions at
every base. These coordinates will conflict, but either the difference or
the sum of the two coordinates at each base will have the same nonzero
value. The event type dictates whether it is the difference or the sum that
produces the constant. We call this constant the ‘bridge invariant’.

The invariant can be computed from any sequence read that spans the
join with enough sequence to establish MUMs on either side of the join.
The properly computed invariant will be independent of the strand of the
read, the start position of the read, the read length, or base calling errors.
The computation will be dependent on the reference coordinate system
and so where the reference assembly reflects a minor variant in the hu-
man population there will be an associated nonzero bridge invariant in
most individuals. For this and other reasons, we construct a database
containing nonzero invariants associated with locations from normal
genomes. This database is helpful as a filter for events, whether we seek
differences between a cancer and the host normal or between a child and
its parents.

2.1 MUMs, Anchors, Bridges and Invariants
A read is evidence for the sequence structure of the sampled genome (see
Figure 1). Most reads will contain one or more MUMs to the reference
genome, aligning either in its 5’ to 3’ orientation (‘forward’) or in its
reverse complement (‘reverse’). If a MUM terminates within but not at
the edge of a read, the final base of the MUM at that termination point is
called an ‘anchor’. Every anchor inherits from its MUM a reference
genome coordinate, the ‘anchor position’. An anchor with the lowest
reference coordinate in the MUM is called the ‘low’ anchor while one
with the highest is called the ‘high’ anchor. The presence of an anchor
means that the read is not entirely consistent with the reference genome.
The sequence adjacent to an anchor but outside the MUM is either a
sequence error or a true difference between the sample and the reference.

Figure 1. MUMs, bridges and anchors. A ‘reference’ genome, a ‘sample’ ge-
nome with an inversion event and a read from the sample are shown. The sequence
CCCCTC on the forward (+) strand of the reference genome has been replaced by
its reverse complement of GAGGGG in the sample. The read is a subsequence of
the sample genome forward strand. The left red underlined MUM and right blue
underlined MUM form a bridge, depicted as a bracket on top of the MUMs. Low
and high MUM anchor locations and alignment orientations are labeled on the
bottom. The right MUM has no high anchor because it terminates at the edge of the
read. The low anchors are the bridge anchors for this bridge.

We call any pair of MUMs in a read a ‘bridge’. The MUMs of a
bridge may overlap, abut or have a gap between them in the read. The
‘bridge anchors’ are the ‘left bridge anchor’ (the right anchor of the left
MUM) and the ‘right bridge anchor’ (the left anchor of the right MUM).

If not due to sequence error, bridges arise from substitutions, indels,
inversions or translocations, and these types can be distinguished by
bridge invariants, as we now discuss.

A bridge can be characterized by the bridge anchor ‘offset’, which is
the right bridge anchor read coordinate minus the left bridge anchor read
coordinate. The offset is positive if the MUMs do not overlap. It is also
characterized by the bridge anchor types (low or high) and the genomic
coordinates of the bridge anchors. In the absence of read error, these
characteristics together with any sequence separating the MUMs unique-
ly characterize an event: the characteristics are unaffected by differences
in read strand, read length and read placement. For example, the lengths
of the bridge MUMs do not affect the bridge characteristics.

However, to obtain a characteristic that is not sensitive to substitution
error, and that can be used between individuals who might differ by
SNPs, we need something stronger, the bridge invariant. The bridge
invariant plays a critical role when we search for structural genomic
variation.

The bridge invariant is calculated from the other bridge characteris-
tics, but is not sensitive to substitution read error or substitution poly-
morphisms. The invariant also is useful for typing an event, and, for
simple events, measuring its size.

To calculate the bridge invariant, we begin by picking any base posi-
tion b with a read coordinate Rb within MUM m. Based on the alignment
of the MUM to the reference genome, b has a unique genome coordinate
Gm,b. Now consider any read position x with read coordinate Rx. The
MUM m induces a MUM-genome coordinate for that position, Gm,x,
namely
 𝐺",$ = 𝐺",& + 𝐴(𝑅+ − 𝑅&) (1)
where A is +1 for forward MUMs and −1 for reverse MUMs.

Note that Gm,x will be independent of the choice of b. Let n be the oth-
er MUM. Then, up to a sign, the bridge invariant I is evaluated at any
base x as the difference of the m- and n- genome coordinates when m and
n have the same orientation (forward or reverse), and the sum of the
coordinates if they have different orientations. To resolve the ambiguity
in sign when computing we use this formulation for the bridge invariant:
 𝐼 = 	 𝑆"𝐺",$ + 	𝑆1𝐺1,$ (2)
where for each MUM j, Sj is −1 for a MUM if it has a low bridge anchor
and +1 if it has a high bridge anchor. Therefore, the invariant is 0 if the
bridge is caused by base substitutions, negative if caused by deletions
and positive if caused by insertions. For indels the absolute value indi-
cates the length of the event. Figure 2 shows an example of an invariant
calculation for a small insertion event.

Figure 2. Computing the invariant. A reference genome and an insertion event in
a read are shown. Genomic coordinates are displayed in black underneath the
reference sequence. The sequence AC has been inserted into the sample genome
between positions 10 and 11 of the reference genome. A read from the sample
genome is shown, with read coordinates displayed underneath in red. Dotted and
dashed lines colored the same as each underlined MUM in the bridge demonstrate
the genomic coordinates induced by the MUMs on the read at the first base of each
MUM. The coordinates induced on the read by the MUMs are displayed under-
neath the read in yellow and blue, and note that the difference in the two coordinate

reference:
+ACGTCCCCTCT T ACGT ACGT
- TGCAGGGGAGAA TGCA TGCA
sample:
+ACGTGAGGGGT T ACGT ACGT
- TGCACTCCCCAA TGCA TGCA

inversion event

read:
GTGAGGGGT T ACGT AC

bridge

high reverse low low forward

reference:
ACGTCCCCCCT T ACGT ACGT
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

read:
TCCCCCCACT T ACGT A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16read coord:
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19left MUM coord:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17right MUM coord:

. CC-BY-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/078261doi: bioRxiv preprint first posted online Sep. 30, 2016;

http://dx.doi.org/10.1101/078261
http://creativecommons.org/licenses/by-nd/4.0/

MUMdex

systems is a constant. Arbitrarily choosing x as the first base of the right MUM
(position 10 in the read coordinates) to evaluate the genomic coordinates induced
by both MUMs, we note that the left MUM with a high bridge anchor induces
coordinate 13 (yellow) and the right MUM with a low bridge anchor induces coor-
dinate 11 (blue), so the bridge invariant is +13 + -11 = 2 according to Equation 2.

2.1.1 Spurious MUMs

Both read error and real events can create novel sequence that by chance
matches uniquely to a completely unrelated portion of the genome. We
call these chance matches spurious MUMs. All aligners encounter spuri-
ous alignments but they are typically filtered out on the fly with some
degree of success. In contrast, MUMdex retains all MUMs passing op-
tional filters because even spurious MUMs can signal actual events. For
example, a MUM, even if spurious, seen recurrently in one child but not
in either parent may suggest a real de novo event.

To quantify the occurrence of spurious MUMs due to read error, we
used the MUMdex aligner (described later in Software) to align 100
million 151 base long simulated reads containing one centered single
base substitution between unique sequences from the hg19 human refer-
ence genome. In addition to finding the two expected MUMs, we also
found on average 6.02 (unfiltered) spurious MUMs per read. With sim-
ple filters we do much better. First, by requiring that every MUM be at
least 20 bases long, 85.3 percent of spurious MUMs are eliminated.
Secondly, we define ‘excess mappability’ as the length of a MUM minus
the minimum length required to achieve uniqueness for a subsequence
within the MUM. Just requiring MUMs to have an excess mappability of
2 or more eliminates 89.2 percent of spurious MUMs. Additional filters,
such as requiring that supporting MUMs be seen on read pair mates can
also help to reduce spurious MUM contamination of called events.

2.1.2 Bridges and Invariants for Selected Event Types

Substitutions, deletions and insertions of any length, inversions and
translocations can be identified by their distinctive bridge characteristics.
A guide to the bridge structures for these types of events is tabulated in
Supplementary Figure 1.

Bridges bracketing sequence substitutions have similarly oriented
MUMs and a zero invariant. Bridges for deletion events have similarly
oriented MUMs but a negative invariant equal to the length of the delet-
ed sequence. These are the simplest events.

A simple tandem duplication may result in a single bridge with an in-
variant equal to the length of the duplicated sequence. Many more com-
plications can arise from microsatellite expansion and contraction.

A non-tandem insertion event may result in up to three bridges. One
bridge spanning the insertion will have similarly oriented MUMs and a
positive invariant equal to the inserted sequence length. If the inserted
piece contains a MUM, two other bridges are generated: one from the
left flank to the inserted sequence; and one from the inserted sequence to
the right flank. Those bridge invariants are more like those from translo-
cations, and do not have quantitative interpretation. Of course, if an
insertion is too large, the first type of bridge might not be observed.
Instead, bridges at the junctions may be observed separately.

Inversion events can produce a distinctive signature: similar absolute
value positive and negative invariants located nearby, with absolute
value close to twice the local genomic coordinate. If a perfectly inverted
sequence (no removal or addition of bases) is short enough to be brack-
eted by MUMs in a read, the inverted sequence acts as a substitution so
the bracketing bridge will have zero invariant. We use an expansive
definition of inversion throughout this paper, calling any bridge with two
MUMs on the same chromosome but aligning to opposite strands an
inversion.

Translocations are defined as bridges with MUMs on different chro-
mosomes that cannot be identified as part of an insertion event. Translo-
cations are expected to be rare, but most bridges resulting from spurious
MUMs will be cross-chromosome. Translocations are therefore suspect
and may require more evidence, such as increased excess mappability,
more read pair mate support, and the absence of the event in the popula-
tion database.

2.2 MUM-Based Analysis

2.2.1 Searching for de novo events

To illustrate how we use the processing (storage and analysis) system we
have created, we consider a particular application, one of many, the
occurrence of a de novo structural event. The signature for such an event
is clear: we find in the child bridges in multiple reads each at the same
location and with the same nonzero invariant, and not in the parents
despite high depth of coverage at the same location. The data structures
we build are designed to facilitate such searches. We continue to refer to
this application in the following.

2.2.2 Recurrence and coverage, operational conditions

Under operating conditions, base-calling errors will be common, cov-
erage may be variable, and peculiarities in the reference genome relative
to the child all can cause misinterpretation of data. In this section we
discuss these, and explain the auxiliary features of the processing that
lessen their impact. We introduce the notions of ambient coverage, an-
chor counts, support from paired end alignment, and so on. These lead to
quantitative filters that can be applied with varying degrees of stringen-
cy.

Base calling errors may cause misalignment and result in spurious
MUMs and invariants. Fortunately, most read errors are not recurrent, so
we can set as a requirement a threshold for number of recurrent invari-
ants. We count invariants by read pair; if an invariant was seen in both
mates for a read pair it is counted only once.

Similarly, coverage is important in the parents. If we fail to see the in-
variant in one of the parents, it could be a failure of coverage or merely
the result of under-sampling. Although this is unavoidable on occasion,
we take several steps to guard against it. First, we define ‘ambient cover-
age’ of a genomic position for a sample as how many read pairs in the
sample contain a MUM that is at least 25 bases long (to exclude most
spurious MUMs) that covers the position. We require that the ambient
coverage at both bridge anchor positions of the event in both parents
exceed a reasonably large threshold.

Second, we check for isolated bridge anchors in the parents, to see if
the adjacent sequence is mostly compatible with the child’s consensus
sequence for the event. This allows us to disqualify events as de novo if
the parent had the event but one of the MUMs is not present due to base
calling error, somatic mutation or just being cut off at the end of a read.

Additionally, we search for bridges in a larger population, because ob-
serving the same bridge in the general population can be taken as evi-
dence that the event is common, and merely missed in one of the parents.
Moreover, bridges that are highly common in certain regions may indi-
cate potential flaws in the reference genome, or else regions that are not
stable during library preparation. It is important to note, however, that
certain regions of the genome may be highly unstable within the
germline or somatic cells of the individual as we shall discuss later.

We also seek to determine that the bridge MUMs in the child them-
selves are long enough that a single nucleotide polymorphism in the

. CC-BY-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/078261doi: bioRxiv preprint first posted online Sep. 30, 2016;

http://dx.doi.org/10.1101/078261
http://creativecommons.org/licenses/by-nd/4.0/

P. Andrews et al.

region does not cause recurrent spurious alignment. Along the same
lines, we seek in the paired reads evidence that the sequences adjacent to
an event are consistent with our interpretation of the event, for example
that the right paired read is consistent with the rightmost MUM align-
ment. We therefore require that each MUM in a bridge has consistent
read pair mate support in at least one read pair.

3 Software
The MUMdex package consists of an aligner, an alignment format, anal-
ysis software and a portable population database of common structural
variants to aid filtering. The MUMdex alignment format contains all
MUM alignments to the reference found in read pairs, indexes read pairs
by the genomic coordinates of their MUMs, and is able to reconstitute
input read pair sequences. MUMdex analysis software examines MUM-
dex alignment files for a population to detect rare and de novo mutation
candidates.

MUMdex software is written in C++ for the C++14 (ISO/IEC, 2014)
standard but is also compilable using C++11. It has been tested most
fully using the GCC compiler version 4.9.2 in the Linux operating sys-
tem. Considerable attention was paid to output format compactness and
analysis efficiency. There is also an optional Python wrapper which can
run the MUMdex aligner and allows complete access to the MUMdex
alignment format.

3.1 The MUMdex Aligner
The MUMdex aligner (mummer) uses a suffix array (Manber et al.,
1993) and Longest Common Prefix (LCP) array (Kasai et al., 2001) to
efficiently find a variant of a MUM where the sequence may be repeated
in the query. This variant (called a maximal almost unique match, or
MAM) allows for discovery of tandem duplications in addition to all
other mutation types such as SNPs, indels of any size, inversions and
translocations.

The MUMdex aligner does not utilize base quality score information
generated by the sequencing instrument. A reasonable pre-processing
step prior to MUMdex alignment (that we do not perform) would be to
clip the ends of reads if quality scores become unacceptable.

The MUMdex aligner borrowed the suffix array implementation of the
sparseMEM package (Khan et al., 2009) and extensively modified it to:

• provide object-oriented interfaces and increase parallelism
• remove sparse feature to boost speed and lower complexity
• remove a genome length limitation of 2.147 billion bases

• allow saving and regular or memory-mapped loading of a
binary reference and the suffix array and LCP structures

• read query input in the SAM (Li et al., 2009b) or FASTQ
(Cock et al., 2010) formats

• optionally pass through quality scores and SAM fields
• eliminate multiple parsing of query input
• align to the reference and its reverse complement
• save sequences and alignments in the MUMdex format

The MUMdex aligner will automatically generate and save the binary
reference, suffix array and LCP array if they do not yet exist. The suffix
array generation process for a human reference genome requires less
than 32 GB of physical memory and may take several hours. Subsequent
memory-mapped use of the suffix array and associated structures is
capable of performing alignment with only a few GB of physical
memory, but will proceed much more efficiently if at least 32 GB of
physical memory is available. Optional simultaneous alignment (produc-
ing identical output) to the reference and its reverse complement requires
120 GB of memory but is 3x faster.

The MUMdex aligner outputs the MUMdex format directly in a set of
separate MUMdex format subdirectories of fixed maximum number of
read pairs, pre-sorted to put likely duplicate read pairs adjacent to each
other. The program merge_mumdex merges the MUMdex parts into a
single MUMdex output directory, marks duplicate read pairs, generates
and saves the genome order MUM index and then removes the MUMdex
parts (Supplementary Figure 2).

3.2 The MUMdex Alignment Format
The MUMdex alignment format stores read pair, MUM and sequence
information in memory or in files as arrays of POD (Plain Old Data)
C++ objects in native binary format (Figure 3). This means the output
format may not be portable between different machine architectures or
compilers, but data access can be very fast.

All MUMs for a read pair are stored in a block and the MUM blocks
and sequence information are stored in the same order as the read pairs.
All information for each read pair can therefore be very efficiently
streamed into memory (using memory-mapped files). An index enables
optional traversal of all MUMs and the associated read pair information
over a region, but this method is not advised for traversing all MUMs or
read pairs because the resulting memory access patterns are inefficient.

Information for each MUM is stored in 8 bytes of space. This includes
the MUM chromosome (8 bits: up to 255), chromosomal position (32

Figure 3. Topology of the MUMdex alignment format. The MUMdex object contains 5 arrays of objects. Arrows at the left show the direction of linkage between objects
depicted as dotted lines. The pairs array stores pair objects, sorted by the lowest reference coordinate of the first MUMs in each mate. Pair objects point to their associated
bases object and the first MUM in the pair. According to this scheme, pairs 5 and 6 in the diagram have no MUMs while pair 2 has 3 MUMs. MUM index objects point to
MUMs via their pairs (full linkage not shown) and are sorted in genome order for the MUMs they point to. The bases array stores one bases object for each pair to encode
pair sequence not covered by MUMs. If the sequence is too long to fit in a bases object, the bases object points to a block in the extra array to store the sequence.

MUMdex

index
mums
pairs
bases
extra

index 1 index 2 index 3 index 4 index 5 index 6 index 7 index 8 index 9 index 10 index 11 index 12

MUM 1 MUM 2 MUM 3 MUM 4 MUM 5 MUM 6 MUM 7 MUM 8 MUM 9 MUM 10 MUM 11 MUM 12

pair 1 pair 2 pair 3 pair 4 pair 5 pair 6

bases 1 bases 2 bases 3 bases 4 bases 5 bases 6

b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9 b 10 b 11 b 12 b 13 b 14 b 15 b 16 b 17 b 18 b 19 b 20 b 21 b 22 b 23 b 24 b 25

. CC-BY-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/078261doi: bioRxiv preprint first posted online Sep. 30, 2016;

http://dx.doi.org/10.1101/078261
http://creativecommons.org/licenses/by-nd/4.0/

MUMdex

bits: up to 4.29 billion), MUM length and offset in read (10 bits: up to
1023), plus bits for MUM alignment strand, whether the MUM is on read
1 or read 2, if the MUM is the last MUM in a read pair and if the MUM
touches the end of the read.

Read pair information is stored in 8 bytes of space. This includes the
index of the first MUM in the read pair (40 bits: up to 1 trillion), the
length of each read (10 bits: up to 1023) and bits specifying if the read
pair is marked as a duplicate, if the read pair contains MUMs, or if either
read is marked as bad by either the sequencer or user software.

Up to 21 bases of unaligned sequence is stored for each read pair in a
bases object in 8 bytes of space. If more sequence storage space is need-
ed, the bases object instead contains a 63 bit index to a block in an over-
flow array encoding all excess sequence in 3 bits per base.

The MUM index for genome ordered access uses 8 bytes per MUM
for storing the read pair index (40 bits: up to 1 trillion) and the index of
the MUM in the read pair (11 bits: up to 2047), with some space re-
served for optional applications. MUMs can be looked up by genome
position in O(log N) time and genome position ranges can be traversed in
O(R) time, where N is the number of MUMs in the MUMdex file and R
is the number of MUMs in the range.

Apart from the flags encoding duplicate and bad read status for a read
pair, all MUMdex object access is read-only to prevent inadvertent cor-
ruption of data by user code. Pair, MUM and index objects and read
sequences are accessed via the MUMdex object either by using integer
array indices or by using iterators. MUMdex-related objects are laid out
in memory and on disk as simple C++ structures, but access is granted
only via overhead-free member functions. The MUMdex object also
provides access to a reference object to query various aspects of the
genome such as chromosome lengths and sequence.

The format is designed for compactness without employing block
compression, so entries can be quickly retrieved in random-access fash-
ion. With a minimum MUM length cutoff of 20, the MUMdex alignment
format losslessly compresses real whole genome sequencing reads by
about 2.7 times compared to the read sequences stored as ASCII text.

3.3 MUMdex Analysis Software and Other Tools
MUM-based analysis begins with one or more MUMdex alignment files.
Depending upon project goals the approach taken will differ, but since
the MUMdex aligner does not interpret read pairs but simply reports all
MUMs found, the alignment format is a generally useful starting point
for many types of analysis.

We favor a bridge-based analysis method because it is essentially im-
mune to contamination from base substitution read error for non-SNP
candidate types. Bridge-based analysis is performed using the bridges
and population_bridges programs (Supplementary Figure 2). The bridges
program summarizes information for each bridge observed over all read
pairs for a sample and saves the summary by chromosome. The popula-
tion_bridges program looks for de novo candidates and/or events seen in
a single family in a region of a chromosome over a population.

Population-based analysis helps to filter false de novo candidates re-
sulting from anomalies in the genome reference, common events missed
in the parents, and possibly genome regions of great instability. We have
prepared a ‘portable’ population database for use by users processing a
small number of families who do not have the resources to sequence
additional samples. The database contains all bridges seen at least twice
in a single individual from a collection of 1020 parents using the hg19
reference, and is included with the Supplementary Materials. Justifica-
tion for the cutoff of a count of at least two is given in the results.

Other tools distributed in the MUMdex package can be used to con-
vert between formats, facilitate different types of analysis or aid in the
examination of MUMdex data:

bridge_figure: create an event pdf with explanatory figures
namepair: pairs reads in a SAM file by read name
fastqs_to_sam: convert fastq files to a name paired SAM file
count_anchors: count anchor and reference alleles for a sample
show_all_counts: output anchor counts over a population
anchor_repeatness: output repetitivity info for bridge anchors
count_pseudogenes: find processed pseudogenes in a sample
denovo_pseudogenes: find de novo candidates over population
find_bridge: check samples or families for a specific bridge
find_microsatellite: assess microsatellite status for a position
mumdex2txt: convert a MUMdex alignment file to text format
mumdex_sequences: output the sequence for each read pair
mumdex2sam: convert MUMdex alignment file to SAM format
show_mums: output MUM information in text format
show_pairs: output read pair information in text format
pair_view: text view of read pairs to visualize MUM alignments
bridges2txt: convert bridges program output to a text format
karyotype: create a karyotype figure with event histogram
population_database: create a portable population database
pop2txt: convert population database between binary and text

4 Results
We show that MUMdex software losslessly compresses simulated ge-
nomic sequence without error. We characterize performance using real
whole genome data from 40 quad (mother, father, proband child and
sibling) families of the Simons Simplex Collection (Fischbach et al.,
2010). We show that de novo indel and structural variation candidates
can be found using whole genome data from 510 quad families from the
same collection.

4.1 Verification of MUMdex Correctness Via Simulation
We processed reads from a simulated sample genome containing single
base substitutions and structural variation to test the ability of the MUM-
dex aligner and alignment format to losslessly compress the input. Suc-
cess for this test is defined as being able to reconstruct the input se-
quence and read pair mate associations from the MUMdex alignment file
while compressing the input sequence better than the gzip (Deutsch
1996) algorithm does.

To produce the simulated sample genome, we first concatenated all
chromosomes of the hg19 human reference genome to produce a single
sequence. We then introduced base substitutions across the genome with
a probability of 0.001 per base. Finally, we introduced breaks between
bases in the genome with a probability of 0.001, shuffled the resulting
pieces and concatenated them to construct a new sequence. Given the
reference genome length of slightly over 3.1 billion bases, this procedure
resulted in a simulated sample genome with approximately 3.1 million
base substitutions and 3.1 million junctions between sequences not nor-
mally adjacent in the human reference genome.

We generated 151 base long paired reads by randomly generating po-
sitions in the simulated sample genome uniformly in the range [0, LG –
LR), where LG is the genome length and LR is the read length, and extract-
ing the sequence starting at that position. We required that no read se-
quence selected was identical to any other read sequence to allow defi-
nite read identification during correctness testing. 100 million read pairs

. CC-BY-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/078261doi: bioRxiv preprint first posted online Sep. 30, 2016;

http://dx.doi.org/10.1101/078261
http://creativecommons.org/licenses/by-nd/4.0/

P. Andrews et al.

were generated in this fashion for each of 10 runs for a total of 1 billion
read pairs tested.

We ran the MUMdex aligner with a minimum mum length filter of 20
on each group of 100 million read pairs, and every time we were able to
reconstruct all input read sequences from the MUMdex alignment file
while maintaining the read pair mate associations. On average, the
MUMdex alignment file is 4.8 times smaller than the simulated input
read sequences stored one sequence per line as ASCII text and 1.4 times
smaller than a gzip-compressed version of the same sequence file.

4.2 Analysis Speed and Output Size Characteristics
Alignment of 143 bp whole genome read pairs to the hg19 reference and
its reverse complement using 12 threads runs at a rate of over 4.5 million
read pairs per minute on Xeon E5-2690 processors with sufficient
memory and large local Raid-5 SAS storage. Average processing times
and storage space requirements for 160 such datasets processed in paral-
lel are shown in Table 1.

Processing Step Time Output Size

mummer 3.13 hours / sample 63.214 GB / sample
(deleted by next step)

merge_mumdex 3.86 hours / sample 118.034 GB / sample

bridges 1.55 hours / sample 47.630 GB / sample

population_bridges 11 hours elapsed 103 kB total

analysis total 165.664 GB / sample

Table 1. MUMdex time and space. Averages for processing 160 whole genome samples with
no MUM length cutoff are shown. The average number of 143 bp read pairs per sample was
439,296,367. The resulting alignment speed of 4.68 million reads per minute and the speed of the
merge_mumdex and bridges steps were slower than optimal due to storage device contention
from 20 compute nodes processing the samples in parallel. The mummer program used 12
threads per node, bridges used 24 threads per node and the other programs were single threaded.

We compared Bowtie 2 plus SAMtools sort operating as a pipeline
with 200GB available for sorting to MUMdex using the same dataset and
number of threads (12). We find that Bowtie 2 takes 13 hours versus 7
hours for MUMdex with no MUM length cutoff. MUMdex saves ap-
proximately 8 times the number of alignments as Bowtie 2, yet the
MUMdex output file is 2/3 the size of the Bowtie 2 BAM file. The
MUMdex space advantage is a result of both the reference compression
method used and the fact that MUMdex discards basecall quality score
information. Operating MUMdex with a MUM length cutoff of 20 great-
ly reduces the time for the merge_mumdex step and the size of the
MUMdex alignment file.

Converting MUMdex output to BAM format results in a BAM file
that is about 3% smaller than the MUMdex alignment file. Sequential
access of the BAM file is approximately 50% faster than sequential
MUMdex access. Random access, lookup by genomic position and espe-
cially gathering information for all alignments of a read pair are all much
slower for the BAM format than for the MUMdex format. This is be-
cause BAM entries are variable sized objects embedded in indexed gzip-
compressed blocks that need to be decompressed and linearly searched
for each access while the MUMdex format allows direct random access
and keeps read pair information together instead of being interspersed as
in a BAM file.

4.3 Whole Genome De Novo Detection
We used MUMdex to analyze whole genome sequence data generated
from DNA extracted from whole-blood of 2040 individuals in 510 quads

from the Simons Simplex Collection. The libraries had an average frag-
ment length of 362 bases and sequencing was performed in paired end
mode to an average depth of coverage of 30. Of the 510 families, 40
were amplified using PCR and had read lengths of 143 bases and the
remainder used a ‘PCR-free’ method (Illumina, 2015) and had read
lengths of 151 bases. We searched for de novo structural variations using
stringent conditions.

The stringency of the de novo candidate list is defined by setting
thresholds for inclusion. We require that each candidate bridge be seen in
at least 5 read pairs in a child. In the child, the lengths observed for each
bridge MUM must be at least 25 with excess mappability of at least 1 in
some read. A bridge with identical characteristics must not be present in
the parents of the child, yet the ambient coverage must be at least 10 at
both bridge anchor positions in both parents. We also eliminate events as
de novo if for either bridge anchor in the child a parent has even one
MUM with a coincident anchor and that parental MUM has sequence
adjacent to the anchor nearly identical to the 10 base adjacent sequence
of the child’s anchor.

If a complex event generates multiple bridges, we attempt to retain on-
ly the ‘outermost’ of these bridges, meaning that the bridge MUMs must
be compatible with the surrounding location. To achieve this, we require
20 or more bases of additional support be seen in at least one mate in the
correct orientation for each bridge MUM.

To investigate the effectiveness of the population filter, we allowed
the identical bridge characteristics to appear in up to four other families.
We call those candidates with no identical bridge seen in any other fami-
ly the ‘strong’ de novo candidates. The other events we call ‘recurrent’.
We detected 6278 de novo candidates in total, with 4740 being of the
strong type. Of the strong candidates, 2376 were found in the proband,
2336 were found in the unaffected sibling and 28 were shared between
proband and sibling. Supplementary Figure 3 is a karyogram showing
the positions of all anchors of strong candidates. At gross resolution,
strong anchors have for the most part a uniform distribution of events
over the genome with only a few hotspots and dead zones.

The majority of strong events were short (< 10 bp) deletions, followed
by short insertions, larger deletions and insertions, translocations, and
even larger insertions and some inversions. Table 2 is a breakdown of
observed event types and Supplementary Figure 4 is a histogram of the
size distribution of smaller indel events.

N Events Invariant (I) or Distance (D) Event Signature

2054 2 <= |I| < 10 deletion
1218 -1 deletion
563 1 insertion
401 2 <= |I| < 10 insertion
305 10 <= |I| < 100 deletion
109 10 <= |I| < 100 insertion
24 1000 <= |I| < 10000 deletion
20 100 <= |I| < 1000 deletion
9 10000 <= |I| < 100000 deletion
9 inter-chromosomal translocation
7 100 <= |I| < 1000 insertion
6 10000 <= |I| < 100000 insertion
4 1000 <= |I| < 10000 insertion
3 100000 <= |I| < 1000000 insertion
2 1000000 <= |I| < 10000000 insertion
2 100 <= D < 1000 inversion
2 1000 <= D < 10000 inversion
1 10 <= D < 100 inversion
1 1000000 <= D < 10000000 inversion

Table 2. Counts for event type and size range. Event sizes for strong de novo candidates are
characterized by the invariant (I) for insertions and deletions and by the chromosomal distance
(D) between bridge anchors for inversion events.

. CC-BY-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/078261doi: bioRxiv preprint first posted online Sep. 30, 2016;

http://dx.doi.org/10.1101/078261
http://creativecommons.org/licenses/by-nd/4.0/

MUMdex

Events identified as translocations or very large inversions, deletions
and insertions should be viewed with skepticism and be investigated in
detail. We have examined most of these, and in many cases they arise
from a small local de novo event, such as a substitution, which thereby
created a spurious MUM, yet the event still passed all filters. Table 1 in
the Supplementary Materials lists the properties of each event found in
detail.

4.4 Properties of recurrent events
Limiting ourselves to strong candidates helps avoid calling a rare variant
a de novo event when by chance it was missed in the parents. However,
the same filter prevents us from identifying true de novos that are fre-
quently recurrent. Our full list of de novos contains an additional 1538
candidates where the bridge was seen in up to 4 other families.

Figure 4 is a scatter plot of the maximum bridge count seen in other
families (which is zero if the event was seen in only one family) versus
the candidate bridge count. It demonstrates that in the vast number of
cases, the bridge was either not seen or was seen at a maximum count of
1 in some other family. Events seen at a count of more than 1 in some
other family show the expected roughly linear relationship between the
candidate bridge count and the maximum other family bridge count.
Events seen with a count greater than one in some other family also
appear to transmit roughly as expected (Supplementary Figure 5), strong-
ly suggesting that they are not somatic mutations or artifacts of library
preparation or sequencing platform. By contrast, almost all events seen at
a maximum count of one in other families are not transmitted, and thus
are either somatic mutation or an artifact of preparation or platform in
those families.

Figure 4. Maximum bridge counts. For every candidate de novo event (seen in a
child, not its parents and fewer than five other families) we plot its bridge count on
the X-axis vs. the maximum bridge count observed in any non-candidate family on
the Y-axis. Jitter has been added to the counts to help separate overlapping points.

The group of recurrent candidates (those seen with high bridge counts
in other families) have significantly different properties than the strong
candidates, and we believe these properties may have been the cause of
much of the recurrence. As shown in Figure 5 Panel A, the offset be-
tween bridge anchor positions tends to be negative for events seen in
more than one family. The effect is stronger still for events that are
transmitted (Panel B). A negative offset means that the bridge MUMs

have high overlap, which is expected for repeat expansion and contrac-
tion events and for non-allelic homologous recombination events. These
observations are consistent with finding long repeats more frequently at
the bridge anchor coordinates of recurrent de novos (see Supplementary
Figure 7).

Figure 5. Offsets for recurrent and non-recurrent candidates. Negative offset
values indicate that the bridge MUMs overlap each other. In blue in both panels we
see a normalized histogram of anchor read offsets of strong de novo candidates.
Panel A shows a normalized histogram of anchor read offsets for candidates seen
in from two to five families (red). The area in common between the two histograms
is displayed in purple. Panel B shows a normalized histogram of anchor read offset
for candidates seen in at least two members, each at a count of at least two, in
another family (red), a proxy for transmission.

The interpretation of Figure 4 provides the justification for the bridge
inclusion criteria in our portable population database, where we only
include a bridge if seen at least twice in at least one individual. A scatter
plot of invariant vs position for indels from the portable database is
shown in Supplementary Figure 6 for a typical one megabase region.
Clearly, the aggregate events in the human population show a highly
structured distribution, mostly reflecting the repeat structure in the ge-
nome.

The ~250 to 700 base long deletion events in Supplementary Figure 6
seen ubiquitously in the population filter demonstrate its utility. As dis-
cussed in the figure caption, these apparent ‘deletions’ are predominantly
a matter of library preparation, present at ~25 fold the incidence in the
‘PCR-free’ libraries than in the conventionally prepared libraries. They
are recurrent artifacts caused by the PCR-free sequencing method, and
the recurrence filter effectively rejects them as de novo events.

5 Discussion
Specific gross changes in genome structure and copy number have long
been known to be the cause of various syndromes (Lejeune et al., 1963;
Lupski et al., 1991) and play a major role in cancer (Lugo et al., 1990;
Slamon et al., 1989). Structural variation in the human genome will
surely play a large role in our ultimate understanding of evolution, hered-
ity and disease. Yet, the reference genome sequence assembly is weakest
where variation of this type is greatest, and its analysis is far from com-
plete. Analytic tools are critically needed now that thousands of deep
whole genome sequences are becoming available. We offer MUMdex as
one such tool.

. CC-BY-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/078261doi: bioRxiv preprint first posted online Sep. 30, 2016;

http://dx.doi.org/10.1101/078261
http://creativecommons.org/licenses/by-nd/4.0/

P. Andrews et al.

Several key features distinguish MUMdex from other analysis meth-
ods. MUMdex uses only unique matches to a reference genome assem-
bly. MUMdex saves all MUMs and unaligned sequence to create a gen-
eral-purpose sequencing run index, delays the interpretation of reads
until all information is available, characterizes events by their bridge
coordinates and invariants and, additionally, uses a population to help
filter events. The population database aspect of MUMdex analysis helps
avoid false events due to an imperfect reference genome and fully utiliz-
es the large family-based WGS datasets available to us from the SSC
(Fischbach et al., 2010).

The extensive use of maximum unique matches (MUMs) is a choice
that places MUMdex at an extreme point in a space of computational
tradeoffs. We contrast it to other methods with anchor finding techniques
that permit multiple or mutated matches to the genome, which are lim-
ited to local genome searches (and hence the discovery of only small-
scale structural variation) because otherwise there are too many possi-
bilities. What is lost for MUMdex in the tradeoff is the ability to identify
events in duplicated regions or in regions highly divergent from the
reference assembly. Care must also be taken when interpreting MUMdex
events, as the true nature of an event may not be obvious. For instance,
an event with the signature of a translocation may actually be a SNP that
induced a spurious MUM to a distant but similar sequence.

In this manuscript we have presented MUMdex software and de-
scribed the principles behind our analysis, to make it available for use by
the community at large. We have used MUMdex to explore de novo
structural variation in a large population. We have made a ‘portable’
database of structural variants and recurrent spurious events available for
anyone seeking to use our software but who does not have access to
large family databases.

While we are working on validating these preliminary results in the
context of autism studies, the broad outline of what we have found so far
is likely to survive any validations. There is no bias to discovery of ‘lo-
cal’ events by MUMdex, yet most events are small deletions and inser-
tions, with frequency decreasing as event size increases. We observe that
recurrent events are more likely to be found in repetitive regions, and
these regions are likely to be inherently unstable.

In addition to extensive validation, in our future work we will refine
criteria for filtering de novo events, explore regions of genome instabil-
ity, and craft ‘interpretative’ tools, such as the bridge_figure program
mentioned in Software (see Supplementary Figure 8), that allow the
manual inspection of events.

Acknowledgements
We thank all the families at the participating Simons Simplex Collection (SSC)
sites, as well as the principal investigators (A. L. Beaudet, R. Bernier, J. Constanti-
no, E. H. Cook Jr, E. Fombonne, D. Geschwind, D. E. Grice, A. Klin, D. H.
Ledbetter, C. Lord, C. L. Martin, D. M. Martin, R. Maxim, J. Miles, O. Ousley, B.
Peterson, J. Piggot, C. Saulnier, M. W. State, W. Stone, J. S. Sutcliffe, C. A. Walsh
and E. Wijsman) and the coordinators and staff at the SSC sites for the recruitment
and comprehensive assessment of simplex families; and the SFARI staff for facili-
tating access to the SSC.

Funding
This work was supported by grants to M. Wigler from the Breast Cancer Research
Foundation and from the Simons Foundation Autism Research Initiative
(SF235988).
	
Conflict	of	Interest:	none	declared.

References
Cerf V. (1969) ASCII format for Network Interchange, Network Working Group

RFC, 20, Retrieved from http://www.faqs.org/rfcs/rfc20.html
Chen K, Wallis J, McLellan M, Larson D, Kalicki J, Pohl C, McGrath S, Wendl M,

Zhang Q, Locke D, Shi X, Fulton R, Ley T, Wilson R, Ding L, Mardis E
(2009) Breakdancer: an algorithm for high-resolution mapping of genomic
structural variation, Nature Methods, 6 (9), 677-684

Cock P, Fields C, Goto N, Heuer M, Rice P. (2010) The Sanger FASTQ file format
for sequences with quality scores, and the Solexa/Illumina FASTQ variants,
Nucleic Acids Research, 6, 1767-1771

Deutsch P. (1996) GZIP file format specification version 4.3, Network Working
Group RFC, 1952, Retrieved from https://tools.ietf.org/html/rfc1952

Fischbach GD, Lord C. (2010) The Simons Simplex Collection: a resource for
identification of autism genetic risk factors. Neuron, 68 (2), 192-195

Illumina. (2015) TruSeq DNA PCR-Free Library Prep Reference Guide. Part #
15036187 Rev. D Catalog # FC-121-9006DOC

International Organization for Standardization (ISO). (2014) ISO International
Standard ISO/IEC 14882:2014(E) - Programming Language C++. Retrieved
from http://isocpp.org/std/the-standard

Karakoc E, Alkan C, O’Roak B, Dennis M, Vives L, Mark E, Rieder M, Nickerson
D, Eichler E. (2012) Detection of structural variants and indels within exome
data. Nature Methods, 9 (2), 176-180

Kasai T, Lee G, Arimura H, Arikawa S, Park K. (2001) Linear-Time Longest-
Common-Prefix Computation in Suffix Arrays and Its Applications, Proceed-
ings of the 12th Annual Symposium on Combinatorial Pattern Matching, Lec-
ture Notes in Computer Science 181-192

Khan Z, Bloom JS, Kruglyak L, Singh M. (2009) A practical algorithm for finding
maximal exact matches in large sequence datasets using sparse suffix arrays,
Bioinformatics, 25 (13), 1609-1616

Langmead, B, Salzberg S. (2012) Fast gapped-read alignment with Bowtie 2,
Nature Methods, 9 (4), 357-359

Lejeune J, Lafourcade J, Berger R, Vialatte J, Boeswillwald M, Seringe P, Turpin
R. (1963). 3 Cases of partial deletion of the short arm of chromosome 5. C. R.
Hebd. Seances Acad. Sci. (in French). 257: 3098–3102.

Li H, Durbin R. (2009) Fast and accurate short read alignment with Burrows-
Wheeler transform, Bioinformatics, 25 (14), 1754-1760

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis
G, Durbin R, 1000 Genome Project Data Processing Subgroup. (2009) The Se-
quence Alignment/Map format and SAMtools, Bioinformatics, 25 (16), 2078-
2079

Lindberg M, Hall I, Quinlan A. (2015) Population-based structural variation dis-
covery with Hydra-Multi, Bioinformatics, 31 (8), 1286-1289

Lugo TG, Pendergast AM, Muller AJ, Witte ON. (1990) Tyrosine kinase activity
and transformation potency of bcr-abl oncogene products. Science. 247:1079-
1082.

Lupski JR, De Oca-Luna RM, Slaugenhaupt S, Pentao L, Guzzetta V, Trask BJ,
Saucedo-Cardenas O, Barker DF, Killian JM, Garcia CA, Chakravarti A, Patel
PI. (1991) DNA duplication associated with Charcot-Marie-Tooth disease type
1A. Cell. 66: 219-232.

Manber U, Myers G. (1993) Suffix Arrays: A New Method for On-Line String
Searches, SIAM Journal on Computing 22 (5) 935

McKinney EH. (1966) Generalized Birthday Problem, American Mathematical
Monthly, 73, 385-387

Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin W,
Stuart S, Udove J, Ullrich A, Press M. (1989) Studies of the HER-2/neu proto-
oncogene in human breast and ovarian cancer. Science 244: 707–712.

Ye K, Schulz M, Long Q, Apweiler R, Ning Z. (2009) Pindel: a pattern growth
approach to detect break points of large deletions and medium sized insertions
from paired-end short reads, Bioinformatics, 25 (21), 2865-2871

. CC-BY-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/078261doi: bioRxiv preprint first posted online Sep. 30, 2016;

http://dx.doi.org/10.1101/078261
http://creativecommons.org/licenses/by-nd/4.0/

