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yeasts, worms, flies, and now humans. Short of this, genetically or physically mapped
collections of objects derived from the genome under study are still of immense utility,
and are often precursors to the development of complete sequence maps. These objects
' may be markers of any sort, DNA probes, and genomic inserts in cloning vectors.

We have been exploring the use of microarrays to assist in the development of ge-
nomic maps. We report here one such mapping algorithm, and explore its foundation
using computer simujations and mathematical treatment. The algorithm uses unordered
probes that are microarrayed and hybridized to an organized sampling of arrayed but
. unordered members of libraries of large insert genomic clones. i
; In the foregoing we assume some knowledge of genome organization, DNA hy-
bridization, repetitive DNA, gene duplication, and the common forms of microarray
experiments. In the proposed experimental setting, one sample at a time is hybridized
to microarrayed probes, and hybridization is measured as an absolute quantity. We as-
sume probes are of zero dimension, that is, of negligible length compared to the length !
of the large genomic insert clones. Most importantly, we assume that hybridization sig-
nal of a probe reflects its inclusion in one or more large genomic insert clones present in

T

i(;?:gy i;_f the sample, and negligible background hybridization. Our analysis is general enough to ' ; X
on several include the effects of other sources of error. The novelty of the results reported here is . E
\cement) a i in their ability to deal with ambiguities, an inevitable consequence of the use of massive : l
-ation with ‘ parallelism in microarrays involving many probes and many clones. Similar algorithms i
nee metric ' are reported in the literature [7], but assume only the knowledge of clone-probe inclu- y ’
>ct to each , sion information for every such combination and suggest different algorithms that do -§
high accu- ; not exploit the underlying statistical structure. N
bf_'idizat'!on { One important application of our method is in measuring gene copy number in I 5
+ involving : genomic DNA [10]. Such techniques will eventually have direct application to the anai- i
4 ! ysis of somatic mutations in tumors and inherited spontaneous germline mutations in l
?gc?:rizz?i organisms when those mutations result in gene amplification or deletion. In contrast, I8
tate a BAC low signal-to-noise ratios, due to the high complexity of genomic DNA, make other
quenpcede- approaches such as the direct application of standard DNA microarray methods highly
problematic. i
ne of a sin- : :
*J a‘::‘: f‘i‘: 2 Related Literature it
$ - :
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m a graph- studied. As shown in [6], the general problem of physical mapping is NP-complete. An |
ure, we de- £ approach based on traveling salesman problem (TSP) in the absence of statistics is given L8
v \;’e t:avcf ; in [1]. The problem formalism used in this paper will be similar to the foundational work i
?:d t?:r:. :s ; in [1~3,5,7,11, 12, 14). Our method extends the previous results by devising efficient B!
- ¢fficiency 3 algorithms as well as biochemical experiments capable of achieving higher resolution of
E probe placement within contigs. In [8] the MATRIX-TO-LINE problem is suggested as gt
5 the model problem for determining Radiation Hybrid maps. Probe mapping using BACs l
1 is slightly different in that pairwise distances for probes far away cannot be resolved it
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B !
| I
il
i




54 Wwill Casey, Bud Mishra, and Mike Wigler

3  Mathematical Definitions

Given a set of P probes fisted as {p1,p2, - .,pp} and contained in some contiguous
segment of the genome we define a probe map to be a pair of sequences, ordering

= {Pr(1)s Pr(2)s - ., Px(p) } and position = {1, ¥2. - zp}. The position sequence
infers the positions of the probes and the ordering sequence is determined by the per-
mutation' m € Sp that sorts the given list of probes by position.

However the underlying correct position of each probe remains unknown. We infer
probe maps approximating the correct positions as best as possible from an experimen-
tal set of data which is stochastic. Experimental data sets are represented by graphs;
given a set of probes {p1,P2,--

., pp}.let V be the set of indices. Then a pairwise dis-
tance graph is an undirected graph G

=(V,E),ECVxV where each edge ¢;,; maps
10 a distance d; ; between probe i and probe j.

We model various experimental errors arising from the hybridization experiment
used to measure probe to probe di h the model we can understand the dis-
tribution of pairwise distance graphs as a random variable. Under certain parameters
we can implement Bayes formula to build a Maximum Likelihood Estimator (MLE)

for probe map reconstruction. With the MLE established we attempt to optimize the
computation involved for practical implementation.

stance. Wit

3.1 Experimental Procedure
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the genome uniquely. Represent these strings as points

{Z1,.. % p}. Assume that the probes are i.i.d. with uniform random distribution over

the interval {0, G]. Let S be a collection of intervals of the genome, each of length L

(usually ranging from few 100kbs to Mbs). Suppose the left-hand points of the intervals
of § are i.i.d. uniform random variables over the interval [0, G). Take a small, even in
number sized subset of intervals $' ¢ S, chosen randomly from $. Divide S’ randomly
into two equal-size disjoint subsets §' = Sl U Sk, where R indicates a red color class
and G indicates a green color class. Now specify any point & in [0,G] and consider the
possible associations between z, and the intervals in s

Consider a genome represented
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with a laser scanner. Hybridization microarrays allow us to observe such an outcome
sequence for each of the 100,000 probes in a constant amount of time.

Consider an example with human. To make a set of Human Oligoe Probes we may
use restriction enzymes to cut out P probe substrings of size 200bp to 1200bp from the
genome and choose a low complexity representation (LCR) as discussed in [10,9]. We
may arrange for a sequence of M random samples from the BAC library, suppose cach
sample has K BACs and coverage ¢ = —*%{‘« Samples are then randomly partitioned into
two color classes ' = {R, G}, and then hybridized to a microarray, arrayed with P
probes. If we pick one probe p;, then the possible outcomes for one experiment are:

~ pi hybridizes to zero BACs. We say the outcome is ‘B’ {blank).

~ p; hybridizes to at feast one red BAC and zero green BACs. We say the outcome is
R’ (red).

— pi hybridizes to at least one green BAC and zero red BACs. We say the outcome is
‘G’ (green). .

— pi hybridizes to at least one green BAC and at least one red BAC. We say the
outcome is ‘Y’ (yellow),

We call these events ip, ig, i, and iy respectively. We use M random samples to com-
plete the full experiment. The parameter domain for the ful experiment is (P, L, k', M),
where P is the number of probes, L is the average length of the genomic material used
(for BACs, I = 160kb), K is the sampling size, and M is the number of samples. The
output is a color sequence for each probe. The sequence corresponding to probe pj is
s; = {sjk )kt With sj € {B, R,G,Y}.

How the Distances Are Measured. With the resulting color sequences §; we can
compute the pairwise Hamming distance. Let

H; ;j = # places where s; and s; differ,
Ci ; = # places where s; and s; are the same buts; # B,
Ti.j = ¢ places where s; and s; are B.

The Hamming distance defines a distance metric on the set of probes.

Lemma 31. Consider an experiment with parameters (P,L,K,M)} and ¢ = % Let
tand j be arbitrary indices from the clone set and 255 is the actual distance (in number
of bases) separating probe p; from probe p; on the genome. Let £;; = min{z;;, L}.
Then:

2celF ) &,, N

1 +0((&:;)")

G~ Bin (M, 1= ™+ 2e¢ = 2 $)ay; + O((847)%)
Tog ~ Bin (M, (e=4500))

H; i~ Bin(M,
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Proof. See appendix. _ that maximizes
These computations for small # lead to an accurate estimator: the week deper

£
Corollary 32. The estimator of zi; given by #i; = H ;,jg—:ﬁ is good in the sense that
there are values of ¢ so that:

IR
(i) Hence, we can

1 P if:c.-j < L

fE; = dlzig) = VIOV as M -+ oo.
1 -t .
TrreTLC 227L ifei; > L
witho? = (%ﬁé) S Lemma 35. 7/
{dij i<}
Proof. Ttis based on a standard approximation. We have developed Chernoff bounds to :
analyze tradeoff between parameters K (determining c), and M. Forz < % one can
show that for nearly any value of ¢ the above convergence in distributionis significantly
rapid wrt. M. O ; where W:'s ar
. . " H: Hy i43C0 5 . LV
We have developed an estimator of z;; given by &5 = me air L this t
estimator takes into account the variation of sample coverage over the genome. i
Lemma 33. The distribution for distance d is a function of © and is approximated by i
I
w{d—z)? 207 —(d=L)? {20 L |
e e : ande = O
dlz) = loge<L Moo= """ : (G
fdle) o< 2nzo 5= VorLo ¥ ©
Proof,

Proof. Simple restatement of corollary 2.2 0
Since we have assumed that any given probe is distributed uniformly randomly over

the genome, the density function for the probe’s position is:

@)= 5

Hence

Our next lemma is an application of Bayes’ formula to compute f(z|d) from f (z)

and f{d|z) computed above. 1<i,g
—(d—x 2 02: ~(d-£)? 202 A L N ;
Lemma 34, If f(d|z) = ]IOSKL"—%—/—Q%&:——" + ﬂLStSG%}" Then 3 : Loy b _
b bounded by (G
~{z—d)?/20%d 1 K+
d} e 1 I I — ]
fzldy ~ lacr Tondo tlazr logece (G_L>  “Simple Al

Proof. See appendix O.

With conditional f(z|d) we can now define the Maximum Likelihood Estimation }
problem: ) ]
Given an arbitrary pair-wise distance edge weighted complete graph G of P verticeS: ]
representing probes, and each edge (3, 7) labeled with d; ;, a sampled value of a randoffi;
variable with the distribution f{dl}z; — z;]), we would like to choose an embedding °
G (or more precisely, an embedding of the vertices of G) into the real line: ]

{51752;-- 'IE:P} C {O,G],
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that maximizes a likelihood function F (%1, %3, ..., &p|di; : ,J € [1, P]}. By ignoring
the week dependencies, we approximate F as:

I 708 - £5lldiz).
1<i,j<FP
Hence, we can minimize a related cost function
Y. —Inf(lg - £lldi)-
1<i,j<P
Lemma 35. The Optimization problem of finding &; to minimize f(Z;1{%; : i < j},
{di ; 1 i < j}) is approximated by solving the following optimization problem:
minimize Z Wi; (18 — %41 — diz}?,
1<i<j<P

where W;'s are positive real valued weight functions:

1 .
Soidy ifdi; < L;

€ otherwise,
ande =0 (,(,,ém}m)
Proof.
= | ey g
—In f{z{d) ~ 99%d +In{V2rde} ifd < L;
In(G' — L) ~ Inllp<x<c otherwise.
Hence

o —lmf(lE - dlldg) = Y WillE - & - dig)?.

1<HI<P 18i<GSP

. 1 1 1 * - . .
Note that € = 397455 < 7T T < we-LviL B M being the maximum variance is

bounded by (G — L) .

3.2 Simple Algorithm

The simplest algorithm to place probes proceeds as follows: Initially, every probe occurs’
in just one singleton contig, and the relative position of a probe #; in contig Cj is
at the position 0. At any moment, two contigs Cp = [Fp,, py, .. . Tp,] and Cy =
{Zq,+ £qa - - Eq,,] may be considered for a “join” operation: the result is either a
failure to join the contigs Cp, and Cy or a new contig C, containing the probes from
the constituent contigs. Without loss of generality, assume that |Cp| > [Cy, and that
the probe corresponding to the right end of the first contig (zyp, ) is closet to the left end
of the other contig (z4,). That is the estimated distance dy, q, is smaller than all other
estimated distances: dp, q,, dp, q,, a0d dy, .. '
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dPl Q1
L [ 1 /—-\\ ] ] 2l
I i 1 I 1 I 1
Tpy, Zpalps™ Lpy Tq¥qa Tqy” Tqrm

Cp

Let 0 < 6 < 1 be a parameter to be explored further later, and L' = L# < L. 1If
> L/ then the join operation fails. Otherwise, the join operation succeeds with

dPl 1 =
he left of the probes of Cy, with all the relative positions of

the probes of G, placed tot
the probes of cach contig left undisturbed. We will estimate the distance between the

probes in C,, and the probe z4, by minimizing the function:
Z (im — & — d",fh)z

20%d;
ie{pr, . pi)idivg <L ha

minimize )

., pt}) are fixed by the locations assigned in the contig Cyp. Thus

where #;’s i € {p1, .-
taking a derivative of the expression above with respect to £, and equating it to zero,

we see that the optimal location for 4, in C, is
I + df.th) /Ugdi,m
' I/Uzd,' 1

E;e{p,,...,p,}:d.-,.,l <L’ (
Z:‘E{pl peoPt hidi gy <

._ -
d* = max {&p,,

Once the location of z4, is determined in C, at d*, the locations of all other probes of
C, in the new contig C; are computed by shifting them by the value d*. Thus

Co = [Frise s Brer Brrgns- -1 Brign)s

for1 <4 < limgq = ¢iand &y, = d° + Zq,

where 7; = p; and &, = Zp,,
the distance between the pair of

for 1 < { < m. Note that when the join succeeds,
consecutive probes Z,, and &y, is

0 < 51"|+l - Ey £ L’:
and the distances between all other consecutive pairs are exactly the same as what they
were in the original constituent contigs. Thus, in any contig, the distance between every

pair of consecutive probes takes a value between 0 and L'. Note that one may further
simplify the distance computation by simply considering the k nearest neighbors of g,

from the contig Cp: namely, Epi_qrr -
o 2
Zie{l’l—k-}l oDt Jidi g < L7 (.'L';‘ + d‘—»QI) /J d‘-.QI

24,
Zie{pluk,'.l,...,pt}:d.“ql<L‘ 1/0- d',q:

» Epy.

di = max [:'ép,,

In the greediest version of the algorithm k=1and

.
d} = &y, + dpi g

as one ignores all other distance measurements.
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At any point we can also improve the distances in a contig, by running an “adjust
operation on a contig C;, with respect to a probe &, ;, where

Cp = [:c,,,,...,mpj_,,m_,,j,zpj+1,...,a:p,.]

Zp, adjust

v

Tpy

‘We achieve this by minimizing the following cost function:

(18, — &il — dip;)?
2o?d;p,

minimize
i€{p1, e Py Ledi p; <L

where #;’s (i € {p1, ..., 1} \{p;)) are fixed by the Jocations assigned in the contig Cy.
Let:

h={iief{py,...,pjm1} 1 dip; <L)

I = {'iz € {p_,'+1, . .,pg} : di:.Pj < L’}

o = Tiern, (& +diy ;) 1070y 0, + Diger, (£, — diap;) /“th’nm;‘_
Yoien Vot ding + 2ier, 1/0%ding;

At this point,if z* # &;,, then the new position of the probe &, in the contig Cj is
z*. As before, one can use various approximate version of the update rule, where only
k probes from the left and & probes from the right are considered and in the greedicst
version only the two nearest neighbors are considered. Note that the “adjust” operation
always improves the quadratic cost function of the contig locally and since it is positive
valued and bounded away {rom zero, the iterative improvement operations terminate.

4 Implementation of the k-Neighbor Algorithm

INPUT

The input domain is a probe set V, and a symmetric positive real-valued distance weight
matrix D € RS *?, where P = |V|.

PRE~PROCESS

Construct a graph G/ = (V, E'), where E' = {ex = (zi,%y){di; < L'}. The edge
set of the graph G’ is sorted into an increasing order as follows: ey, €2, .., €q, with
Q = | E'| such that for any two edges ex, = [&;,,2;,] and ex;, = {zi,, 2i,), if ky < ke
thend;, ;, < di, j,- G’ can be constructed in O{|V'|?) time, and its edges can be sorted
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in O(|£'] log(]V'])) time. In a simpler version of the algorithm it will suffice to sort the
edges into an “approximate” increasing order by a parameter H; ; (related to d; ;) that
takes values between 0 and M. Such a simplification would result in an algorithm with
O(|E'| log M) runtime.

MAIN ALGORITHM

Data-structure: Contigs are maintained in a modified union-find structure designed to
encode a collection of disjoint unordered sets of probes which may be merged at any
time. Union-find supports two operations, union and find {13], union merges two sets
into one larger set, find identifies the set an element is in. At any instant, a is represented
by the following:

— Doubly linked list of probes giving left and right neighbor with estimated consecu-

tive neighbor distances.
- Boundary probes: each contig has a reference to left and right most probes.

In the kth step of the algorithm consider edge e = [, z;]: if find(z;) and find(z;)
are in distinct contigs Cp, and Cq, then join Cj and Cj, and update a single distance to
neighbor entry in one of the contigs.

At the termination of this phase of the algorithm, one may repeatedly choose a
random probe in a randomly chosen contig and apply an “adjust” operation.

OUTPUT

A collection of probe contigs with probe positions relative to the anchoring probe for
that contig.

4.1 Time Complexity

First we estimate the time complexity of the main algorithm implementing the k—neigh-
bor version: For each e € E’ there are two find operations. The number of union oper-
ations cannot exceed the number of probes P = |V/|, as every successful join operation
leading to a union operation involves a boundary vertex of a contig. Any vertex during
its life time can appear at most twice as a boundary vertex of a contig, taking part in
a successful join operation. The time cost of a single find operation is at most ¥(P),
where v is the inverse of Ackermann’s function. Hence the time cost of all union-find
operations is at most O] E'|y(P)). The join operation on the other hand requires run-
ning the k—neighbor optimization routine which is done at a cost O(k). Thus the main
algorithm has a worst case time complexity of:

O(IB1+(VI) + kIV1)
The Full Algorithm including preprocessing is:

o(IE"og(IV]) + V)

In a slightty more robust version the contigs may be represented by a dynamic balanced 4
binary search tree which admit find and implant operations. Each operation has worst

Plac
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case time complexity of O(log({V']}). Thus after summing over all | £'| operations the
worst case runtime for the main algorithm is:

o(1E og(IV)) + &IV1)
and for the full algorithm is:

o(1&1og(IV1) + IVF?)

mean d{x) of 100 samples whan [[BAC)=I60

var d{x) of 100 samples when I{BAC)=180
14 * 1t Y Y

101

10}

5 What Do the Simulations Tell?

5.1 Simulation: Observed Distance

The sample mean and variation of the distance function are computed with a simple
simulation done in-silico. BACs are 160Kb in length, we generate 1,200 BACs and
place them randomly on a genome of size G = 32, 000Kb, This gives a 6x BAC set.
In this experiment 100 random points are chosen on the genome and for each point we
compute the Hamming distance compared to points 10, 20, 30, ...300 Kb to the right
on the Genome. Color sequences are computed by using 20 samples of 130 randomly
chosen BACs of which half are likely to be red and the other half green.

5.2 Simulation: Full Experiment

Below we describe an in-silico experiment for a problem with 150 probes. On a Genome
of size 5,000 Kb we randomly place 150 probes, there positions are graphed as a mono-
tone function in the probe index. Next we construct a poputation of 500 randomly placed

e elrel e’

A by g A
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BAC:s. From the population we repeat a sampling experiment using a sample size of 32
BACS 16 are colored red, and 16 are colored green. Each sample is hybridized in-silico
to the probe set. Here we assume a perfect hybridization so there are no cross hybridiza-
tions or failures in hybridizations associated with the experiment. We repeat the sample
experiment 130 times. This produces the observed distance matrix, whose distribution
we modeled earlier. This is the input for the algorithm presented in this paper. In the
distance vs. observed data plot we see that using a large M = 130 (suggested by the
Chernoff bounds) has its benefits in cutting down the rate of the false positives. The
observed distance matrix is input into the (10—neighbor, § = -{%) algorithm without
the use of the adjust operation, the result is 7 contigs. The order within contigs had five
mistakes. We look at the the 4th contig and plot the relative error in probe placement.

probe palr-wise observed distance vs
posltions probe distance distance observed
5000
4000 [ 200y
c 3000
2 100!
2 0 100
& 2000
1000 o~ 200
J 200 g 200
0 100 oo . 100 100
0 100 200 Idex o g index index ¢ g index 0 5000
Index X
inferred inferred inferred order difference in relative
; probe positions contig structure given contig order positions for fargest contig
2000 7 150 100
& 50
1500
=5 100 0
@
g B o
= 1000 o4 -50
g g ]
83 50 -100
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0 1 o =200
0 100 200 0 100 20 0 100 200 O 50 00
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results. We shall also consider the choice of probes to limit the cross-hybridization er-
ror and a choice of melting points to further add to the goal of decreasing experimental
noise. A set of experimental designs will be presented for the working biologists. More
extensive simulations, and results on real experiments shall report the progress of what
appears to be a promising algorithm.
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Appendix
A Proof of Lemma 2.1

Lemma Al H;; ~ Bin(M, MFG—)E-PO(J:Z)),C,-J ~ Bin {M,1—e"°+§{e7—
2¢” %)z + O(?),Ti; ~ Bin (M, (e=¢(+ 1)) with parameters (P,L,K, M} as
above and ¢ = “g*, 1, ] are arbitrary indices from the Clone Set and z is the actual
distance as number of bases separating the probe positions on the Genome.

Proof. Since the M samples are done independently the proof reduces to showing that
when M = 1 the probabilities are Bernoulli with respective parameters. Let us define
events T = (iB /\jB) ,O= ((iﬁ /\jR) V(iG /\jg)V (iy /\jy)), and H = (—\T/\—tC).

Given a set of K BACs on a genome [0, G] the probability that none start in an
interval of length ! is (1 - o) & e~ where a = £,

Shown below is a diagram that is helpful in computing the probabilities for events
C,H,T when z < L. The heavy dark bar labeled a represents a set of BACs which
covers probe p; but not p;; the bar labeled b represents a set of BACs that covers probe
p; and pj; finally, the bar labeled c represents a set of BACs that covers p; but not p;.

pj

Hence we derive:

P(Tle < L) = exp(~(ar +ac)(L +2))
P(ir A jriz < L) = emeet+){(1 - g—on (k=2
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I IO P T Proof.
— e—ag(L-}-:v){l - 23—‘”"* + e——an(L+x)]
Plig Ajglz < L) = marllAR) {1 _ ge=aol 4 gmaollte))
Pliy Ajvle < L)=(1 - ge=orl 4 g=orlb+@)) (1 ~ 2e7%¢ T + e~ oa(lte)y
P(CII < L) = P(in\jR!x < L) + Plig Ajgle £ LY+ Pliy Adyle < L)
P(Hiz < L) =1 - [P(Tle < L) + P(Cle < L))
When z > L the probabilities are: For:
as follor
P(T|x > L) = exp(—~{ar + ac)(2L)
P(irAjrlz > L) = emxalZl)f(] — e~ orly2y
Plic Ajale > L) = e”®mEE{(1 - e74)?)
Pliy Ajylz > L) = (1—e **")*(1 = e~oh)? .
PClz> L) = P(ig A jrlz 2> L) + P(ia Adglz > L)+ Pliyv Ajylz > L) i
P(H|z > L) =1-[P(T|z 2 L)+ P(Clz 2 L)] .
: u
functior
Because ap = g, el = agl = £ = {‘;—é‘- Let ¢ = ¢(z) = P(H) and
p = p(z) = P(C). In general g(x) and p(z) are complicated function of 2, below we
derive a first order approximation of x(g) tobe used as a biased estimator.
—e me (14 )2 2cexp(5F)z 9 .
P(H)z(l—(1—26T+Qe= r)):—w—f—-—-l-O(z) C H
F '
p(T) = (e=0+8)) c1 o
- c, - _s .
P(CY=1-¢ °+—2-(e ¢ _9¢%)x + Ofz?) We trea
W
With independent sampling: tefmﬁsn(?
. 2cexp(=L)e Afe
Pt ) ~ Bin (1, ZREE 4 o) but are
P(Cij) ~ Bin(M,1—¢™* + %(e_c _9¢ %)z + O(z*))
A false

P(T,'}_,’) ~ Bin (M,(e_c(l‘f'*f:))) O

are acty

B Proof of Lemma 2.3 Using Bayes’ Formula

e-—n(d—-:)’[?«’: e-(a-:.)’/:a% ati Int
Lemma B1. Iff(dl:l:) = H0§x<L”_'7§;‘;;—“ + ]ILS,;SG——WEG—‘—. Then 1 VeS8
—(z-d)? /2074 ' “The

s

1
d w0 +H I T —_'")a
flzld) = lact Tondo a>r lpcscs (G—v—L
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__ fda)f(=)
1S f(djo) f(z) de

e—(d—x)’/zu’r ~(d-L)2/9u’L)

é (Hon(L Vinzo + HL‘—:”SGe VarLo

= 1 rG w{d~x)d f2a29x —{d=-L)¥ fa02L
Efo (]1059:<L5"“’;7='—‘—‘—+HL51:5G8—‘W dz

2nzo

For small values of ¢ the denominator in the above expression can be approximated
as follows?:

1 L e—(d—x)n/%r:z G- L) e*(d-«-L)Q/EozL
= (L) [ gy
1) (G) 0 rxo ¢ ( G V2rLo
1 L
N aﬂd<L+ (1 - 5) Su=rL.

Thus, we make further simplifying assumptions and choose the following likelihood
function:

e—(z«»d)’/&rad 1
flz|d) »~ ]1,1<L—-“-‘"\/§:':";E;_"—"' +Ta>r lo<zco ("G"-’_’_—L) , 0

C How Good Are the Resulis?

C.1  False Positives, False Negatives

We treat the problem of false positives, and false negatives with Chernoff’s tail bounds.
We find upper bounds on the probability of getting a false positive or false negative in
terms of the parameters 8, M, ¢ = %,0 <#<1,L = LE <L

A false positive is a pair of probes that appear to be close by the Hamming distance
but are actually far apart on the genome. We denote the event as:

EP = (d< L')A(ax > L)

A false negative is a pair of probes that appear to be far by the Hamming distance but
are actually close on the genome., We denote the event as:

EN. = (z < L)A(d> L)
In the foliowing picture the volume of data which are false positives and false neg-
atives are indicated by the squares noted F.P. and EN. respectively.

The Ditac Delta Function is distibution defined by the equations

(53’::0 =0 If.ZC 7(-' U
fr brodr =1 )




66 Will Casey, Bud Mishra, and Mike Wigler

d The last eve

Applying th:

%/ . P(FN.) -
L L e

We develop a Chernoff bound to bound the probability that the volume of false

positive data is greater than a specified size. . ‘ Ch £

The Chernoff bounds for a binomial distribution with parameters (M, ¢) are given crno

by:

%

v

__ &
(14 v)(tte)

—Mg(1-9)2 . :
P(H <8Mqg) < e 2 thg<f<1 ¥
( ) WY = The Cher

P e et ey

Mg
P(H>{1+v)Mq) < ( ) withv > 0

Chern

Let H (M) be the Hamming distance when M phases are complete. Let g(L) = P(Hlz 8 Shern
>Lyw 2?0%!; = e%;v We start by noting equivalent events:

(d < 0L|z > L) = (¢*H(M) < 6L|z > L)
= (H(M) < af—zgx > 1)

C (H(M) < e%"‘i)

= (H(M) < 6Mq(L))

|
l
{
!
!
1

Using the Chernoff bound we have:

—pec(1-8)2

P(d<6Liz> L)< P(H(M)<8Mqr)<e =2
For the False Negatives we begin by noting that:
(d> Ll < 8L) = (6*H(z) > Ljz < L")
= (6®H(z) > (1 + v)L'|z < L') where v = (% —~1)

= (H(z) > “—“;:):Li:x <)

C (H(z) > (1+v)Mg(z))
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The last event inclusion is because:

(2r:M xr _ 2eML

' 1,

2

Applying the Chernoff bound we get:
eV Mg(z} 1) gd M
P(EN.) < P(H>(1+ v)Mq(z)) < (W) < (5(%_ g#yrar
= (l-nghyM

Chernoff bounds are:

Mef1-8)3

P(ER)<e %
=1l M'?f‘
P(EN.) < (el#-Dp3)™ 5
The Chernoff bounds for typical parameters are shown below.

F.P. Chernot!
upperbound 0.7

F.N. Chernoif
upperbound O=. 7
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