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abstract

PURPOSE Copy-number profiling of multiple individual cells from sparse sequencing may be used to reveal
a detailed picture of genomic heterogeneity and clonal organization in a tissue biopsy specimen. We sought to
provide a comprehensive computational pipeline for single-cell genomics, to facilitate adoption of this molecular
technology for basic and translational research.

MATERIALS AND METHODS The pipeline comprises software tools programmed in Python and in R and depends
on Bowtie, HISAT2, Matplotlib, and Qt. It is installed and used with Anaconda.

RESULTS Here we describe a complete pipeline for sparse single-cell genomic data, encompassing all steps of
single-nucleus DNA copy-number profiling, from raw sequence processing to clonal structure analysis and
visualization. For the latter, a specialized graphical user interface termed the single-cell genome viewer (SCGV) is
provided. With applications to cancer diagnostics in mind, the SCGV allows for zooming and linkage to the
University of California at Santa Cruz Genome Browser from each of the multiple integrated views of single-cell
copy-number profiles. The latter can be organized by clonal substructure or by any of the associated metadata
such as anatomic location and histologic characterization.

CONCLUSION The pipeline is available as open-source software for Linux and OS X. Its modular structure,
extensive documentation, and ease of deployment using Anaconda facilitate its adoption by researchers and
practitioners of single-cell genomics. With open-source availability and Massachusetts Institute of Technology
licensing, it provides a basis for additional development by the cancer bioinformatics community.
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INTRODUCTION

Single-cell genomics is an indispensable tool in the
study of genetically heterogeneous biologic systems
such as cancer. Here we focus on one of the principal
goals in the single-cell genomics field, namely, the
detection of DNA copy-number variation (CNV) from
sparse sequencing of single-cell nuclear genomes. A
typical study conducted in this area would involve
harvesting many hundreds of cells, often from mul-
tiple anatomic locations, each possibly affected by
a tumor.1,2 Following a single-cell DNA preparation
protocol and sequencing, CNV profiles are derived
individually for each cell. A joint analysis of these
profiles may then reveal the phylogenetic structure of
the tumor cell population represented by the sample,
with branches of the phylogenetic tree representing
clonal subpopulations, each with a shared CNV pat-
tern. Multiple computational steps are required to
arrive at this phylogenetic description of the sample,
starting from the raw sequence data. To facilitate this
multistep processing, we here provide a description of

a computational pipeline encompassing all the steps
that are applied to single-cell genomic data. These
data, presented as sequence reads from single cells,
can be generated by a variety of molecular protocols.
Visualizing the emerging single-cell population struc-
ture and placing it in a broader genomic and phe-
notypic context is often essential, in both research and
clinical settings. For example, in prostate cancer,
a diagnosis of localized disease may be reached on the
basis of a histopathologic finding that cancer is con-
fined to an index lesion detected by magnetic reso-
nance imaging. Such a diagnosis would be challenged
by single-cell genomic data if a clonal population of
tumor cells, with massively altered genomes, were to
be found to have spread away from the index lesion
and into locations within the gland deemed cancer free
by histopathology.2 The requisite functionality is pro-
vided by the single-cell genome viewer (SCGV), a
graphical user front end for the pipeline. The SCGV
integrates anatomic, histopathologic, and other cell-
specific metadata with single-cell genomic profiles

Author affiliations
and support
information (if
applicable) appear at
the end of this
article.

Accepted on March
23, 2020 and
published at
ascopubs.org/journal/
cci on May 20, 2020:
DOI https://doi.org/10.
1200/CCI.19.00171

464

Downloaded from ascopubs.org by COLD SPRING HARBOR LAB on June 1, 2020 from 143.048.116.022
Copyright © 2020 American Society of Clinical Oncology. All rights reserved. 

http://ascopubs.org/journal/cci
http://ascopubs.org/journal/cci
http://ascopubs.org/doi/full/10.1200/CCI.19.00171
http://ascopubs.org/doi/full/10.1200/CCI.19.00171


generated by the pipeline. Although elements of the
pipeline were discussed in our earlier publications,1-4 here
for the first time we present an integrated software
framework for single-cell genomic profiling as a public
resource incorporating these elements.

RESULTS

As illustrated in Figures 1 to 4, the pipeline accomplishes 3
major tasks: an estimation of integer-valued copy-number
(CN) profiles of individual cells, starting from cell-specific
genome sequencing read data (Fig 1); a collective analysis
of multiple single-cell CN profiles to infer the clonal struc-
ture of the cell populations represented in the sample
(Fig 2); and a graphical rendition of the output, com-
plemented by nongenomic elements, such as histologic
slide images of the tissues from which the cells originate
(Figs 3 and 4). We next describe how each of these tasks is
accomplished in turn.

Derivation of the CN Profile of a Cell

The underlying assumption of CN profile estimation is
that the CN at a given location in the genome is approxi-
mately proportionate to its read density. Our computational
strategy, which is based on this assumption, is to make an
equipartition (EP) of the genome into consecutive bins,
such that the expected number of uniquely mapping se-
quence reads from a diploid cell would be the same for all
bins (Fig 1A and 1D). EP facilitates signal aggregation
across consecutive bins. Because the expected number of
mapped reads per bin is dependent on read length, the
binning scheme matches the average read length of the
sample, and we determine EP by mapping large sets of
in silico–derived reads.

There is however, another factor besides read length that
alters the expectation of bin counts, namely, a bias caused
by the guanine and cytosine (GC) content of the bin. This
bias varies among single cell libraries. Thus, to maintain the
principle of EP, we make an adjustment for the expected

counts in a bin, separately for each cell. Adopting a method
from CN analysis in the bulk,5,6 we use Lowess fit7 to
compute the amount of adjustment, as explained in the
following text.

The number of bins in the partition is user defined, and its
optimal choice depends on the coverage depth. For diploid
cells, we recommend aiming at binning schemes with an
average read count of at least 20 per bin. We offer as an
option masking centromeres from the partition. We rec-
ommend this because it is our experience that the
uniqueness of mapping often cannot be determined ac-
curately for the sequences in the centromeres.

The CN profile of a cell is determined in several steps.
Sequence reads originating from the cell are mapped to the
reference genome using HISAT28 or Bowtie,9 and uniquely
mapping reads increase the appropriate bin read count by
an increment of one (Figs 1A, 1C, and 1E). We next perform
GC bias correction, adopting for this purpose the following
model:

log (nb
�
n̄) � log(cb

�
c̄) + B

�
gb
�
+ r ,

where nb is the read count in bin b and cb is the CN of that
bin. An overbar denotes the mean of the corresponding
quantity over all bins. Furthermore, B is the bias term
dependent on the bin GC content gb, and r is random noise
with zero mean. We subtract a Lowess fit for B(g) from
log(nb/n̄; Fig 1F) and estimate log(cb/c̄) from the residual
log(cb/c̄) + r. To do so, we approximate log(cb/c̄) + r by
a piecewise-constant function of the bin number b, a pro-
cess known as segmentation (Fig 1G). For this purpose,
we use, with minor modifications, the circular binary
segmentation (CBS) algorithm, as implemented by the
package DNAcopy.10,11 CBS and similar segmentation
algorithms are probabilistic: positions of the segment
boundaries, or CN change points (CP), are inferred to within
a CI, centered at the most likely position of the CP.

CONTEXT

Key Objective
We sought to facilitate the introduction of single-cell DNA copy-number analysis into clinical research and practice by

providing a complete, easy to deploy and use, software pipeline for low-coverage single-cell genome sequence data
processing and visualization.

Knowledge Generated
Analysis of single cells sampled from a tumor leads to the identification of copy-number events in the genomes of these cells.

The tumor cell population structure is derived from collective examination of these altered genomes, together with
quantitative measures of clonal complexity ubiquity and spread, and placed in a broader anatomic and histopathologic
context by visualization.

Relevance
Genomic profiling of tumors at a single-cell level, facilitated by the current pipeline, is a novel source of information on the

aggressive and invasive properties of tumors, with a potential for diagnostic usefulness when used in combination with
findings from histopathology and imaging.
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The final step in CN derivation is taken in the expectation
that the CN of a single cell is integer throughout the ge-
nome. To find the corresponding integer values, we find
a multiplier M for the segmented CN ratio cb /c̄, such that
the mean squared error from roundingM cb /c̄ to the nearest
integer is minimized12 (Fig 1G). The corresponding nearest
integer values are then taken as the final estimate of the CN
cb, to be used in downstream analysis. In addition, the mean
squared rounding error for the optimalM is a useful measure
for quality control, because its anomalously large values may
point to molecular protocol errors, such as DNA sequence
reads from multiple cells being attributed to a single cell or
single nuclear fragmentation or degradation. Finally, note
that, with integer-valued cb, CP with equal flanking integer
CN values are eliminated and the corresponding segments
merged.

Collective Analysis of CN Profiles and Derivation of the
Clonal Structure

Integer-valued CN profiles of multiple cells are analyzed
collectively to establish the clonal structure of the cell
populations represented in the sample. To make this col-
lective analysis possible, we compare single-cell CN profiles
pairwise and quantify their dissimilarities. To do so, we use
CP observed in CN profiles of the cells to define a set of
features such that, for each feature and profile, the feature
is either present in the CN profile or not. To define the
feature set, we follow a procedure depicted in Fig 2.
Namely, each CN profile is reduced to a series of CP
(Fig 2A). A CP has 2 attributes: the genomic location or the
number of the genomic bin where it occurs and the sign of
the CN change because the CP is crossed in the direction of
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FIG 1. Single-cell–level data processing performed by the pipeline. Sequence reads sorted by cell (A) are mapped to the reference genome (B), and only
uniquely mapping reads are retained for additional processing (C). Given the average read length determined from the read data (A), the genome is
partitioned into contiguous bins with an equal expected number of uniquely mapping reads per bin (D). For each cell, the uniquely mapping sequence read
counts per bin are computed (E). These counts exhibit systematic dependence on the guanine and cytosine (GC) content of the bin, which is removed using
Lowess (F) to obtain a noisy estimate of c/c̄ from n/n̄ (see Derivation of the CN Profile of a Cell subsection). Segmentation is performed on the GC-adjusted
read counts, and the result is rescaled to approximate integers (G).
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increasing genomic coordinate. Given the inherent un-
certainty of the CP positions, they are represented by short
genomic intervals (CP intervals), each centered at the most
likely location of the CP, as inferred by segmentation. We
next identify, for all such CP intervals in the entire collection
of single-cell profiles corresponding to a given CP sign, the
smallest set of points in the genome, called stabbing points,
such that each CP interval contains at least one of these
points. This is the simplest instance of a minimal stabbing
problem,13 and it is solved by a greedy algorithm, with
execution time of O(k log k), where n is the number of CP
intervals. Each stabbing point in the resulting set defines
a feature. A feature is said to be present in a cell genome if
there is a CP of the appropriate sign in the CN profile whose
CP interval contains the corresponding stabbing point. As
a result, the collection of CN profiles is reduced to 2 binary
matrices, 1 per CP sign. Each matrix has 1 column per cell
and 1 row per feature. These matrices are called the in-
cidence tables.

Represented in terms of features, the collection of cell
genomes is amenable to phylogenetic analysis. We expect
that 2 cells with a more recent common ancestor will share
more features than will 2 cells with only a distantly related
common ancestor. We therefore use feature sharing to
quantify pairwise dissimilarity among cell genomes. We
compute, for each pair of cells, two 2×2 contingency tables
for the features, 1 for each sign, and, from each of these,
the P value for Fisher’s exact test, with the alternative that

the odds ratio is above 1. We then combine the two P values
into one, pc, using either Fisher’s14 or Stouffer’s15 rule
(Fig 2B), and define pairwise dissimilarity of the cell ge-
nomes as log(pc). With this dissimilarity, we compute the
phylogenetic tree, with cells as leaves. We use hierarchic
clustering, with user-defined linkage, to compute the tree.

As a final step in the inference of the structure of the cell
population sampled, we identify highly cohesive branches of
the phylogenetic tree, and we take these to represent clonal
subpopulations. To find such branches, we first examine the
statistical significance of dissimilarities in pairs of cell ge-
nomes. We do so by assuming the null distribution of dis-
similarities to come from random incidence tables, whose
marginals are the same as those observed, exactly for the
rows and on average for the columns, separately for each CP
sign. To compute the false discovery rate (FDR) for the
observed dissimilarities, we sample from the null distribution
by randomizing the incidence tables with the marginals
constrained as described. We then set a threshold on FDR
and declare a tree branch cohesive if FDR is below threshold
for all pairwise dissimilarities of the cells on the branch. We
say that a branch represents a “hard clone” if it (1) is co-
hesive, (2) does not have a cohesive parent, and (3) in
addition, there is a certain minimal number of features that
are present in no less than a preset percentage of cells on the
branch. We further say that a branch represents a “soft”
clone if it contains a hard-clonal branch among its de-
scendants and satisfies condition 3, whereas its parent
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FIG 2. Computation of pairwise dissimilarities among single-cell copy-number (CN) profiles. (A) In a collection of
3 single-cell CN profiles, change points (CP) are identified and represented by short genomic intervals, shown in
red for positive CP and in blue for negative CP. A set of genomic locations is found such that each CP interval
contains at least one of them. Using these, a collection of CN profiles is reduced to 2 binarymatrices, 1 for each CP
sign, termed incidence tables. (B) From these, 2 contingency tables are formed for each pair of cells, and pairwise
dissimilarity is computed by combining P values from the 2 Fisher’s exact tests.
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branch does not. To complete our analysis in the population
structure, each of the detected clonal branches is examined
for the presence of subclones. This is accomplished by
applying the clone-finding procedure to the incidence tables
for the cells in the clonal branch only, which is simplified by
removing rows of all 1s or all 0s.

Visualization

The SCGV is a visualization interface for a collection of
single-cell genomes, together with the clonal structure it
represents and additional relevant information, not nec-
essarily genomic in origin. The key functionalities of the
SCGV are illustrated in Figs 3 and 4. The data displayed in
Fig 3 originate from a radical-prostatectomy specimen,2

which scored Gleason 9 on histopathologic evaluation.
Cells for genomic analysis were harvested from a number of
areas in the prostate. The metadata include the anatomic
location of origin (sector) for each cell and a histopathologic
evaluation for each location of origin. Genomic data in Fig 4
were generated using 10× Genomics single-cell CNV
technology16 and represent a mixture of cells from BJ,
a human diploid foreskin fibroblast cell line (ATCC CRL-
2522) and MKN-45, a human gastric cancer cell line, with
a 10:1 ratio.

Once the SCGV is invoked, the processed genomic data,
together with histopathologic and other annotation, are
read in, either from a directory or from a compressed file
archive using the appropriate functions (Figs 3A and 4A). In
the opening screen, single-cell genomes are displayed as
columns of a heat map, with the chromosomes concate-
nated from 1 through Y. CN gains and losses are encoded
in red and blue colors, respectively, with darker colors
corresponding to greater deviations from CN 2. Alterna-
tively, the heat mapmay be used to represent the incidence
tables described in the preceding subsection, with positive
and negative features present in each cell genome shown
at their genomic position in red and blue colors, re-
spectively (button 3 in Fig 3A, the resulting view not shown).
The cells are arranged horizontally as leaves of a phylo-
genetic tree. The 2 tracks immediately above the heat map
are used to indicate clonal and subclonal cell populations
present in the data. Additional tracks are located below the
heat map and are used to display user-supplied, cell-
specific metadata. One of these is reserved to display
the anatomic location of origin (sector) for each cell, if
available. Other tracks are configurable by the user and can
be used to display any categoric or numeric metadata

A
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D

FIG 3. Functionalities of the single-cell genome viewer (SCGV), illustrated for a case of 130 cells harvested from multiple locations of a surgical
specimen from a radical prostatectomy. (A) The opening view of the SCGV, with the genomic data and single-cell metadata loaded from a directory
(1) or a compressed archive (2). Copy-number (CN) profiles of individual cells are shown as columns of a matrix, with genomic coordinates as rows.
CN value is color coded (side panel 9). The user has the option (3) to also view the feature matrix, with features as defined by the change points, as
explained in Results. The phylogenetic structure of the sample is visualized as a tree, shown in the upper portion of the view. The cells belonging to
clones and subclones are indicated in color in the 2 tracks immediately under the tree. Additional tracks, in the lower portion of the view, display, for
each cell, the mean squared deviation of a CN profile from a nearest integer, the value of a multiplier required to minimize that error, and the
anatomic location (sector, color code shown in side panel 10) of origin for the cell. Additional tracks may be configured for the available single-cell
metadata (4), such as the cell sorter gate for the cell and the color code for the tracks displayed (12, 13). (B) Cells may be reordered by sector (11) or
by categoric values in any of the configurable tracks (14). (C) Any sector from side panel 10 may be selected to display it separately. (D) An
annotated pathology slide from a sector may be displayed in a separate view.
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associated with the cells. For example, a track may be used
to indicate the cell type as determined by flow-cytometric
analysis. The cells can be reordered by the values encoded
in any of the tracks. A particularly useful reordering is by
sector, making it easy to see the sectors in which clonal
populations reside (Fig 3B). A subset of the data, and
a corresponding subtree, may be displayed for any chosen
value in any of the tracks, in particular, for any given sector
(Fig 3C). An additional function of the SCGV facilitates the
display of images associated with the sector, in particular,
those of hematoxylin and eosin–stained tissue slides
(Fig 3D). A user may select and zoom into subsets of cells,
such as those representing a clone, and/or parts of their
genomes, for closer examination (Fig 4B). Alternatively, it is
possible to select any number of cells, either by location in
the heat map or by typing their cell identifiers, and display
a stack of their CN profiles (Fig 4C). These can also be
zoomed into (Fig 4D), and the University of California at
Santa Cruz genome browser can be invoked for a genomic
region of interest (Fig 4E).
Software Design and Organization

The complete pipeline is termed Sparse Genomic Analysis
of Individual Nuclei by Sequencing (SGAINS) and contains
modules in the Python and R languages, in addition to
third-party tools. The R language modules of SGAINS en-
compass the downstream part of SGAINS, starting with

segmentation of CN profiles, and are organized into an R
package termed SCclust, available for download separately.
Our visualization tool, the SCGV, is downloaded and in-
stalled as a separate unit.

In designing our tools, we emphasized flexibility of use and
modularity. The user has the option to execute the entire
pipeline, starting from unmapped sequence read data
sorted by cell and minimally annotated reference genome
sequence. In this case, the user can control the execution
by means of approximately 50 parameters defined in the
configuration file. Multiple additional parameters, either
provided as command-line options for subcommands or as
arguments of the functions composing the SCclust pack-
age, are then set to their default values. Alternatively, if
a finer level of control is required, the pipeline may be
executed interactively as a series of subcommands and
SCclust function calls, with all parameters available to the
user. Modularity also means that multiple subcommands,
SCclust and the functions within it, and the SCGV can be
used in a stand-alone fashion. For example, a user may use
tools other than SCclust to discover the clonal structure in
a set of single-cell CN profiles, then use the SCGV to vi-
sualize the result, with no loss of SCGV functionality. The
SCGV, in addition, imposes only minimal data requirements
on the user: multiple data elements, including the phylo-
genetic tree, the sector assignment, and the microscopic

A B
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FIG 4. Additional functionalities of the single-cell genome viewer (SCGV), illustrated for a case of a sample of cells from the BJ euploid cell line with
a 10% admixture of copy number (CN)–altered cells from the MKN-45 gastric cancer cell line. (A) The admixed MKN-45 cells form a clonal branch
in the left portion of the main view. (B) This clone, and the corresponding portion of the heat map, may be examined in more detail using a zoom-in
function. From this or any other view, the opening viewmay be restored by pressing the home button. Individual CN profiles may be selected (B, top
side panel) and displayed in a stack (C). From this view, a genomic region of interest may be zoomed into (D) and displayed in University of California
at Santa Cruz Genome Browser (E).
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slide images may be missing without affecting the SCGV
functionalities that are independent of these elements.

A small number of operations in the pipeline claim most of
the execution time. We use parallelization to speed up these
critical modules. At present, processing by multiple central
processing units using the Sun Grid Engine scheduling
system or its equivalents such as Univa Grid Engine and
multicore processing is available for subcommands com-
posing SGAINS, in particular, for the time-consuming
enumeration of uniquely mapping regions. In SCclust, most
of the time is consumed by permutation tests required to
evaluate pairwise dissimilarity of cell genomes, and a
massive speed-up is achieved by multiple-core execution.
The latter relies on functions in the R package “parallel”.
Future versions of our software will include multiple central
processing unit parallelization of this operation. In addition,
the user can save time by using one of several genomic
binning schemes provided with the pipeline and corre-
sponding to the most up-to-date and widely used versions
of the human and mouse genomes.

The pipeline software is written in the Python and R lan-
guages and incorporates third-party tools, including
HISAT2,8 Bowtie,9 Samtools,17 Dask,18 and PyQt.19 Given
this heterogeneity, we rely on Anaconda as our software
management and distribution tool.

DISCUSSION

The area of single-cell genomics is undergoing rapid
technologic innovation. In designing the pipeline as de-
scribed, we sought to ensure that data analysis, interpre-
tation, and visualization do not become a rate-limiting
factor in this development, nor an obstacle to the adoption
of single-cell DNA technologies. We therefore provided a
complete, extensively documented, and easily deployable
solution for all steps in the analysis of sparse single-
cell genomic data. Our tools were conceived initially to
meet the needs of our in-house single-cell technology
development3,4,20 and its applications to cancer.1,2,21 In
particular, this work gave rise to novel methods for col-
lective analysis of multiple single-cell CN profiles, described

in Results, including representation of CN profiles in terms
of CP-based features, the definition of dissimilarity between
CN profiles, and the statistically supported identification
of clones. These were later adapted for use by a broader
research community, including users of commercial single-
cell genomics platforms such as those provided by 10×
Genomics. Their subsequent evolution will be shaped, in
large measure, by community feedback.

In developing our visualization tool, the SCGV, we em-
phasized the integration of genomic data with anatomic and
histopathologic annotation. The value of such integration is
illustrated in Fig 3A, where cells composing the cancer
clone are readily seen to originate from areas of the prostate
where high-grade (Gleason score 9) cancer tissue was
found on pathologic examination. Moreover, 2 such areas
are each dominated by a distinct cancer subclone.

We foresee a number of important directions in which our
software will evolve in the future. First, there is additional
information to be extracted from single-cell genomic data
and used for more accurate reconstruction of the clonal
structure. In particular, if germline single-nucleotide se-
quence variants are known for the patient, these can be
used to infer the allele-specific CN profile of each cell.
Patterns of somatic single-nucleotide variation, observed in
single cells, contain information about the clonal structure
and can be used for its inference,22,23 in combination with
the CN data, especially in cancer types in which such
variation is common. Second, by integrating genomic and
transcriptional single-cell data,24 both with anatomic and
histopathologic annotation, we are likely to gain insights into
the properties of tumors that are beyond reach of any one of
these modalities alone. For example, it would be of great
interest to learn the associations between tumor clonal
populations and elements of the microenvironment. We
will address algorithmic learning and visualization for this
purpose in future work. The SGAINS pipeline, the SCclust
package, the SCGV graphical interface, and the input data
for the examples of SCGV use discussed in Results are
available for download.25
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