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calling copy numbers at single-cell, integer levels; and (5) the fact 
that current tools for exploring population structure are not built 
for single-cell data. In addition, several sources of cell-specific 
experimental errors, including GC content and other sequencing 
biases, need to be addressed.

Here we present Ginkgo, an open-source web platform for the 
automated and interactive analysis of single-cell CNVs (http://
qb.cshl.edu/ginkgo and Supplementary Software). Ginkgo ena-
bles researchers to upload samples, select processing parameters 
and explore population-structure and cell-specific variants within 
a visual analytics framework in a web browser.

Ginkgo’s user-friendly interface guides users through every 
aspect of the analysis, from inputting mapped reads through 
visualization and exploration of the single-cell copy-number pro-
files (Fig. 1). Briefly, mapped reads are binned by chromosome 
position, normalized for GC biases and other amplification arti-
facts and then segmented to identify chromosome regions with 
consistent copy-number states. Integer copy-number states are 
then assigned to each segment, which allows Ginkgo to calculate 
hierarchical tress and heat maps from the copy-number profiles of 
the collection of cells. This pipeline builds on our previous single-
cell sequencing work13 and contains several novel features: (1) an 
algorithm for determining absolute copy-number state from the 
segmented raw read depth, (2) a method for controlling quality  
issues in the reference assembly (Online Methods), (3) an 
option to integrate ploidy information from flow cytometry to 
more accurately call copy number and (4) a suite of interactive  
visual analytics tools that allows users to easily share results with  
collaborators and clinicians. Ginkgo provides functionality for 
five different species (human, chimp, mouse, rat and fly) and 
includes a wide array of tunable parameters for individual users’ 
needs (Online Methods).

Once an analysis is complete, Ginkgo displays an overview  
of the data in a sortable data table, an interactive phylogenetic 
tree14 of all cells used in the analysis and a set of heat maps  
detailing the CNVs that drove the clustering results. Clicking 
on a cell in the interactive phylogenetic tree or data table allows 
the user to view an interactive plot of the genome-wide copy-
number profile of that cell, search for genes of interest and link 
out to a custom track of amplifications and deletions in the 
UCSC genome browser. Ginkgo also outputs several quality- 
assessment graphs for each cell: a plot of read distribution across 
the genome, a histogram of read-count frequency per bin and 
a Lorenz curve for assessing coverage uniformity15. Subsets  
of interesting cells can also be selected by the user for direct 
comparison of copy-number profiles, Lorenz curves, GC bias 
and coverage dispersion.
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Single-cell sequencing1 has become an important tool for prob-
ing cancer2, neurobiology3, developmental biology4–6 and other 
complex systems, enabling investigators to unravel genetic  
heterogeneity in samples and accomplish more complete phylo-
genetic reconstruction of subpopulations than is possible with 
bulk sequencing. Thousands of individual human cells have been 
profiled to map subclonal populations in cancerous tumors7 and 
circulating tumor cells8, to discover mosaic CNVs in neurons3 
and to identify recombination events in gametes5,9. One key appli-
cation of single-cell sequencing is the identification of large-scale 
(>10 kb) CNVs3,7,10. In cancer, CNVs form a ‘genetic fingerprint’ 
from which one can infer the phylogenetic history of a tumor11 
and trace the progression of metastatic events7. Yet the analysis 
of single-cell sequence data is complex and demands tools that 
can make the approach more broadly accessible.

Although many computational tools exist for CNV analy-
sis of bulk samples12, currently there are no fully automated 
and open-source tools that address the unique challenges of  
single-cell sequencing data: (1) extremely low depth of sequenc-
ing coverage (<1×), which makes for noisy profiles and renders 
split-read, paired-end or single-nucleotide polymorphism density 
approaches ineffective; (2) whole-genome amplification (WGA) 
biases, such as the failure to amplify entire segments13, which 
can markedly distort read counts; (3) inflated read counts (‘bad 
bins’) resulting from poorly assembled regions of the genome 
(for example, centromeres)13; (4) the need for new algorithms for 
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To validate Ginkgo, we set out to reproduce the findings 
of five single-cell studies that used either multiple annealing 
and looping-based amplification (MALBAC) or degenerate  
oligonucleotide–primed PCR amplification (DOP-PCR) 
(Supplementary Note and Supplementary Table 1). These 
studies addressed vastly different scientific questions, obtained 
data from a variety of tissue types and made use of different  
experimental and computational approaches at different 
institutions. Using Ginkgo, we replicated the vast majority of 
published CNVs for each cell in each of the data sets, with 
the exception of one cell from a study by Hou et al.16. We 
believe that this failed replication was due to mislabeling in 
the National Center for Biotechnology Information (NCBI) 
Sequence Read Archive. Moreover, Ginkgo was able to repro-
duce the distinct clonal subpopulations in the two data sets 
from Navin et al.7 (Supplementary Fig. 1) and the patient clus-
tering results from Ni et al.8 (Supplementary Fig. 2) that were 
generated from called CNVs. Using simulated copy-number 
profiles, we confirmed that Ginkgo reliably identified copy-
number changes (98.8% accuracy, 98.7% true positive rate and 
1.2% false positive rate) and perfectly reproduced population 
structure through clustering of the individual samples (Online 
Methods and Supplementary Table 2).

Although Ginkgo corrects for many of the biases present  
in single-cell data, higher-quality data inevitably lead to  
higher-quality results. We set out to compare the biases and  
differences in coverage uniformity among the three most widely 
published WGA techniques—multiple-displacement amplifica-
tion (MDA), MALBAC and DOP-PCR—using three distinct data 
sets with each method.

Raw sequencing reads downloaded from NCBI were mapped 
to the human genome and downsampled to match the sample 
with the lowest coverage. Aligned reads were then binned into 
variable-length intervals across the genome that averaged 500 kb 
in length but contained the same number of uniquely mappable 
positions (Online Methods). We use these binned read counts 

Upload mapped
reads to Ginkgo

For every cell:

Bin reads into regions
across genome

Quality control: analyze read
coverage and uniformity

Remove outliers: normalize,
GC correct and smooth bins

Segment bins and determine
copy-number state

Cluster all cells
hierarchically

Generate heat maps

Upload your .bed files (We accept *.bed,*.Zip, *.tar, *.tar.gz and *.tgz)STEP 0

Add files... Cancel upload

figure 1 | Flowchart for performing single-cell copy-number analysis with 
Ginkgo. Usage and parameters are described in the Online Methods and on 
the Ginkgo website (http://qb.cshl.edu/ginkgo).
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figure 2 | assessment of data quality for different single-cell whole genome amplification methods using Ginkgo. (a) LOWESS fit of GC content  
with respect to log-normalized bin counts for all samples in each of the nine data sets analyzed: three for MDA (top left, green), three for MALBAC  
(center left, orange) and three for DOP-PCR (bottom left, blue). Each colored line in a plot corresponds to the LOWESS fit of a single sample. The upper  
and lower dashed lines in each plot mark twofold increased and decreased values with respect to the average observed coverage. Note that the MDA plot 
has a different y-axis scale because of the large GC biases present in those data sets. (b) The MAD between neighboring bins. A single pairwise MAD value 
was generated for each sample in a given data set and is represented in the figure by a box and whisker. The bold line in the center of a box represents  
the mean, the box boundaries represent the quartiles and the whiskers represent the remaining data points. Names along the x-axis are the first authors 
of the referenced studies. T16 and T10 refer to types of breast cancer tumors as established by Navin et al.7. The high biases present in the MDA data sets 
made it difficult to compare DOP-PCR and MALBAC samples. supplementary figure 3 shows this comparison more clearly.
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to measure two key data-quality metrics: GC bias and coverage 
dispersion. Importantly, raw bin counts provide a view of data 
quality that is impartial to the different approaches to segmenta-
tion, copy-number calling and clustering.

GC content bias refers to preferential amplification of a  
given genomic region due to the local fraction of G and C  
nucleotides17. This bias introduces cell- and library-specific 
correlations between GC content and bin counts. In particular, 
when the GC content in a genomic region falls outside of a cer-
tain range (typically <0.4 or >0.6), read counts rapidly decrease 
(Online Methods). We found that the GC bias of MDA was very 
high compared with that of MALBAC or DOP-PCR (Fig. 2a). 
Only 45.9% of MDA bin counts fell within the expected coverage 
range, compared with 94.0% of MALBAC bin counts and 99.6% 
of DOP-PCR bin counts. It is important to note that regardless 
of the WGA approach used, each cell has unique GC biases that 
must be individually corrected.

As a further measure of data quality, we calculated the median 
absolute deviation (MAD) of all pairwise differences in read 
counts between neighboring bins for each sample, after normal-
izing the cells by dividing the count in each bin by the mean read 
count across bins. The MAD is resilient to outliers caused by copy-
number breakpoints, as transitions from one copy-number state to 
another are relatively infrequent. Instead, pairwise MAD reflects 
the bin count dispersion due to technical noise. As expected on the 
basis of previous comparisons15,18, MDA data displayed high levels 
of coverage dispersion, with a mean MAD two to four times that of 
the DOP-PCR data sets (Fig. 2b). In addition, the MALBAC and 
MDA data sets showed large differences in data quality between 
studies, whereas the DOP-PCR data sets showed consistently flat 
MAD across all three studies (Supplementary Fig. 3).

We found that DOP-PCR outperformed both MALBAC and 
MDA in terms of data quality. As previously reported15,18–21, 
MDA displayed poor coverage uniformity and low signal- 
to-noise ratios. These characteristics, coupled with overwhelm-
ing GC biases, make MDA unreliable for accurate determination 
of CNVs compared with the other two techniques examined. 
Furthermore, although both DOP-PCR data and MALBAC data 
can be used to generate CNV profiles and identify large variants, 
DOP-PCR data have a substantially lower coverage dispersion and 
smaller GC biases than MALBAC data. Our results indicate that 
given the same level of coverage, data prepared using DOP-PCR 
can reliably call CNVs at higher resolution with better signal- 
to-noise ratios and are more reliable for accurate copy-number 
calls than are data obtained with MDA or MALBAC.

methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. The following accessions were referenced in 
this study: SRP017516, SRA053375, SRA056303, SRA060945, 
SRP029757, SRA091188, SRX021401, SRX037035, SRX037132 
and SRP030642.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
Code availability. The source code for Ginkgo is available 
open source as Supplementary Software and is maintained at 
https://github.com/robertaboukhalil/ginkgo. It is also prein-
stalled at http://qb.cshl.edu/ginkgo. It provides a large number 
of user-specified parameters to control analysis and interpreta-
tion (Supplementary Table 1). Several parameters must be set  
according to the experimental design (genome, bin size, sex chro-
mosome masking and flow cytometry copy-number estimation), 
but others allow the researcher to explore the analysis using differ-
ent metrics depending on the goals of the study. A more complete 
description is provided below.

Binning method. Copy-number analysis begins with binning 
of uniquely mapping reads into fixed- or variable-length inter-
vals across the genome. This aggregates read-depth information 
into larger regions that are more robust to variable amplifica-
tion and other biases. The use of fixed-length bins is generally 
discouraged because they lead to read dropout in regions that 
span highly repetitive regions, centromeres and other complex 
genomic regions.

To generate boundaries for variable-length bins, we use the 
method outlined by Navin et al.7 to sample 101-bp stretches of the 
reference assembly at every position along the genome. These sim-
ulated reads are mapped back to the genome using Bowtie24, and 
only uniquely mapping reads are analyzed. For a given bin size, 
we assign reads to bins such that each bin has the same number 
of uniquely mappable reads. Consequently, intervals with higher 
repeat contents and low mappability will be larger than intervals 
with highly mappable sequences, although they will both have the 
same number of uniquely mappable positions.

When variable-length bins are used with sufficient depth of 
coverage and consistent ploidy, sequence reads are expected to 
map evenly across the entire genome with uniform variance. Users 
are provided with a variety of bin sizes from which to choose, 
depending on the overall coverage available; if the mean coverage 
per bin is too low, users are encouraged to use larger bins.

Masking bad bins. A number of regions, specifically around the 
centromeres of certain chromosomes, attain very high read depths 
compared with the expected depth in both bulk and single-cell 
sequencing data. Using data from 54 normal individual diploid 
cells from the breast tissue of multiple individuals, we deter-
mined these ‘bad bins’ in the human reference genome (hg19) 
as follows25. We divided the bin counts by the mean bin counts 
for each cell to normalize for differences between cells in the 
total read count. For each chromosome, we subtracted the mean 
of the bins over all cells from each individual cell’s normalized 
bin count to normalize for differences between chromosomes.  
We then used the mean and s.d. of the autosomes to compute an 
outlier threshold corresponding to a P value of 1/N, where N is 
the number of bins used. Fewer than 1% of bins were identified 
as extreme outliers and masked for further processing.

GC bias correction. Once reads are placed into bins, Ginkgo  
normalizes each sample and corrects for GC biases before  
segmentation. The normalization process begins with division 
of the count in each bin by the mean read count across all bins.  
This centers the bin counts of all samples at 1.0. To identify and 

correct GC biases, Ginkgo computes a locally weighted linear 
regression26 using the R function LOWESS (smoother span, 
0.5; three iterations; delta = 0.1*range(x)) to model the rela-
tionship between GC content and log-normalized bin counts.  
This LOWESS fit is then used to scale each bin such that the 
expected average log-normalized bin count across all GC values 
is zero. After the LOWESS fit, we monitor the bias of each cell by 
calculating the proportion of bins that fall outside an expected 
coverage of zero by ±1, log2.

Segmentation. After GC bias correction, bin counts are  
segmented to reduce fluctuations in noise across chromosomes 
and identify longer regions of equal copy number. Ginkgo  
makes use of circular binary segmentation (CBS), which seg-
ments the genome by recursively splitting the chromosomes into 
segments on the basis of a maximum t-statistic until a reference 
distribution estimated by permutation is reached27. Once the  
CBS segmentation is complete, the breakpoints (segment 
boundaries) across all bins are determined, and the counts for all  
bins in each segment are reset as the median bin count value in 
that segment.

The key step during segmentation is selecting the right refer-
ence sample for comparison. Using a diploid sample to normalize 
bin counts can eliminate additional biases uncorrected by GC 
normalization. Although Ginkgo supports data uploads from such 
a cell, this is not always possible, so Ginkgo provides alternatives 
for segmenting samples: (1) independent segmentation, where 
samples are segmented independently by their own normalized 
bin count profiles, and (2) sample with lowest IOD, where Ginkgo 
selects the sample with the lowest IOD (index of dispersion, or 
the ratio between the read-coverage variance and the mean) and 
uses that sample as a reference for all other samples. The sample 
with the lowest IOD will likely be among the submitted cells with 
the most evenly balanced ploidy and highest quality.

Determining copy-number state. The quantized nature of single-
cell data means that every genomic locus should have an integer 
copy-number value, and the same number of reads per bin should 
separate every sequential copy-number state—for example, ~50 
reads for copy number 1, ~100 reads for copy number 2, ~150 
reads for copy number 3, etc. Although biological and technical 
noise prevent read counts from segregating perfectly into dis-
tinct copy-number states, read counts should still be centered on  
integer copy-number states.

The most direct approach for determining the copy-number 
state of each cell is available for users who have a priori knowl-
edge of the ploidy of each sample. For example, cells that are 
DAPI-stained before cell sorting can be gated on the basis of their 
fluorescence activity, and ploidy can be determined through com-
parison of the cell’s fluorescence activity with that of a reference 
cell with a known copy-number state. With these data, Ginkgo 
determines the copy-number state of each sample by scaling the 
segmented bin counts such that the mean bin count is equal to 
the ploidy of the sample. Finally bin counts are rounded to integer 
copy-number values. Advances in flow cytometry will make this 
copy-number prediction even more accurate in time, although 
cells that are incorrectly sorted and placed into wells with more 
than one cell will show much higher fluorescence activity and will 
have an incorrectly inferred copy-number state.
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Because flow cytometry data are not always available for analy-
sis and have potential for error, Ginkgo provides an alternative to 
determine the copy number of each sample. Because data for each 
cell are binned, normalized and segmented, this copy-number 
profile has a mean of 1 and is referred to as the raw copy-number 
profile (RCNP). If the true genome-wide copy number of a sample 
were equal to X, the scaled copy-number profile (SCNP) would 
then be the product of the RCNP and X, and the final integer 
copy-number profile (FCNP) would be the rounded value of the 
SCNP so that all segments contained an integer value.

With these relationships, Ginkgo infers the genome-wide copy 
number X using numerical optimization. For a given cell, Ginkgo 
first determines the SCNP and FCNP for all possible values of 
X in the set [1.50, 1.55, 1.60, . . ., 5.90, 5.95, 6.00]. Ginkgo then 
computes the sum-of-squares (SoS) error between the SCNP and 
the RCNP for each value of X and selects the value of X with the 
smallest SoS error. Once the multiplier has been identified and 
applied, the scaled bins are rounded to generate the FCNP for 
each sample. Intuitively, this is equivalent to finding the copy-
number multiplier that causes the normalized segmented bin 
counts to best align with integer copy-number values.

Clustering. The final step before visualization is to look out-
side the scope of individual cells and determine the overall 
population structure. Ginkgo first determines the distance  
(dissimilarity structure) between all cells. We provide six distance 
metrics: Euclidean, maximum, Manhattan, Canberra, binary  
and Minkowski. After computing the dissimilarity matrix,  
Ginkgo computes a dendrogram through neighbor joining or 
by hierarchically clustering samples using one of four different 
agglomeration methods: single linkage, complete linkage, aver-
age linkage and ward linkage. In addition, Ginkgo generates a  
phylogenetic tree by first computing the Pearson correlation 
between all samples and using these dissimilarity values to  
cluster the samples.

Masking sex chromosomes. Careful consideration of gender 
must be given when analyzing patients from mixed populations, 
as the combined set of the X and Y chromosomes makes up a 
large fraction of the human genome that can distort the cluster-
ing results. Indeed, when we used Ginkgo to examine the data 
set from Ni et al.8 with sex chromosomes masked, we could still 
discriminate between individual patients’ tumors, but we could 
no longer discriminate between lung adenocarcinoma (ADC) and 
small-cell lung cancer (SCLC) cells (Supplementary Fig. 2b); the 
SCLC patients were exclusively female and, with one exception, 
the ADC patients were all male. Ginkgo comes prepackaged with 
the ability to selectively mask sex chromosomes to prevent gender 
biases from dominating the clustering.

Single-cell data sets analyzed. We validated Ginkgo by repro-
ducing major findings of several single-cell sequencing studies 
that used three different WGA techniques: MALBAC, DOP-PCR/
WGA4 and MDA. We analyzed the data characteristics of nine 
data sets across five tissue types (Supplementary Table 2). The 
Ginkgo parameters for these data sets are described in the main 
text, and additional parameters are noted below.

We mapped reads to hg19 using Bowtie and kept only uniquely 
mapped reads (mapping quality score ≥ 25). Mapped read counts 

ranged from 1,538,234 (Ni et al.8) to 30,638,853 (Lu et al.9) with 
a mean of 15,827,886. To perform an unbiased comparison, we 
randomly downsampled all samples to 1,538,234 reads to match 
the lowest available coverage.

To compute the GC biases across all nine data sets, we calcu-
lated the LOWESS fit of the log2-normalized read counts with 
respect to the bin GC content for each sample. A sample with no 
GC bias would have a flat normalized read count of zero across 
all bins and all GC values. After the LOWESS fit, we monitored 
the bias of each cell by calculating the proportion of bins that 
showed a twofold change from the expected coverage in either 
direction (by ±1, log2).

Detailed comparison of MALBAC and DOP-PCR protocols. 
WGA using MDA introduces a large degree of bias compared 
with MALBAC or DOP-PCR, limiting its applicability to CNV 
analysis. Therefore, in the remaining comparisons we focused 
on MALBAC and DOP-PCR. For a fine-grained comparison of 
the two techniques, we compared the T10 data set from Navin 
et al.7 and the circulating tumor cell (CTC) data set from Ni  
et al.8, because of the similar biological and technical conditions 
used in the studies and similar published analyses. Both data sets 
contain information from aneuploid cancer cells, were sequenced 
to similar depths (CTC mean read count of 4,133,466; T10 mean 
read count of 6,706,119) and were used to generate phylogenetic 
clusters of samples on the basis of CNVs. We began by comparing 
the coverage dispersion and investigated the minimum coverage 
and bin size needed to reproduce the published results.

Coverage dispersion. When we used the MAD criteria described 
above, the DOP-PCR–based T10 data set showed markedly bet-
ter bin-to-bin correlation than the MALBAC-based CTC data 
set as judged by a lower MAD of adjacent and offset bin counts 
(Supplementary Fig. 4). For adjacent bins, the first quartile of 
the CTC MAD comparison was higher than the third quartile 
of the T10 MAD comparison. As we increased the bin offset, 
we observed greater variation in the CTC data, as shown by the 
separation of the mean MAD between the T10 and CTC data sets. 
We interpreted this to mean that there is more local trending in 
amplification efficiency in MALBAC than in DOP-PCR data.

Minimum coverage requirement. We next explored whether 
WGA protocols differ with respect to the minimum coverage 
required to observe the same population or clonal substructure 
identified at full coverage. To this end, we downsampled all data sets 
and analyzed each in Ginkgo to determine (1) how well segment 
breakpoints were conserved and (2) how well the phylogenetic 
relationships were maintained. With all degrees of downsampling 
(from 25% to 99%), the T10 data showed better breakpoint con-
servation than the CTC data, but as expected, increased degrees of 
downsampling led to substantial erosion of breakpoint boundaries 
in both data sets (Supplementary Fig. 5).

Nevertheless, these downsampling experiments showed that 
MALBAC and DOP-PCR are remarkably robust with respect 
to preserving the overall clonal or population structure, even at 
extremely low coverage, although additional, smaller CNVs can 
be discovered with deeper coverage28. The clonal structure of 
the T10 data set remained fully intact across all downsampling 
experiments even as the mapped reads were downsampled by 
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99% (from ~608 reads per bin to ~6 reads per bin). The popula-
tion structure of the CTC data set was preserved when down-
sampled by 95% (from ~597 reads per bin to ~30 reads per bin);  
after downsampling to 99%, one cell from one patient was  
incorrectly clustered.

Although the depth of coverage in both studies was origi-
nally very low (<0.15×), our downsampling results indicate that 
Ginkgo can correctly determine the phylogenetic relationship 
between samples even when sequenced to a depth of coverage 
of only 0.01×. If generally applicable, which we have not proven 
here, this approach will allow for sparser sequencing with higher 
throughput at equivalent cost. After low-coverage sequencing, a 
number of cells from the same phylogenic branch can be pooled 
for deeper sequencing if desired.

Optimizing bin sizes. Bin size directly affects the resolution at 
which CNVs can be called. Up to this point in the study we had 
used 500-kb bins to reproduce the results of Navin et al.7 and 
Ni et al.8 following the procedure by Ni et al.8. However, such 
large bin sizes hinder the identification of smaller copy-number 
events. To identify the minimum bin size needed to reproduce 
the published results, we decreased the bin size from 500 kb to  
10 kb (Supplementary Table 3) for both data sets until the  
hierarchical clustering of the copy-number profiles produced  
different results.

The T10 data set retained its hierarchical structure until bin 
sizes dropped below 25 kb (Supplementary Fig. 6), whereas 
the CTC data set lost its original hierarchical structure at a bin 
size of 100 kb. In the T10 data set, when bin sizes dropped to 
10 kb, a few hypodiploid cells clustered incorrectly. In the CTC 
data set, as bin sizes approached 100 kb, cells from two patients  
(4 and 7) began to overlap. With 50-kb bins, there was wide-
spread overlap between nearly all patients’ cells, and only the cells 
from two patients clustered correctly (Supplementary Fig. 7).  
This indicates that at the same level of coverage, DOP-PCR can 
resolve smaller CNVs than MALBAC can, but more comparably 
structured studies are needed.

Detecting integer copy-number states. Preliminary analysis of 
bin counts indicated that at the same level of coverage, MALBAC 
data had a higher level of coverage dispersion and therefore a 
worse signal-to-noise ratio than DOP-PCR data. Our downsam-
pling experiments supported this claim, as the ability to properly 
discriminate between CTC patients on the basis of copy-number 
state was lost at a bin resolution that was easily resolved with the 
T10 data set. To understand the effects of noise further, we evalu-
ated each data set to discriminate distinct copy-number states.

Because the copy-number states of individual cells are integers, 
we expected the data to be centered at integer values. If the data 
are highly uniform, read coverage per bin will tightly surround 
integer copy-number states. As bin count dispersion around copy-
number states increases or is influenced by local chromosomal 
trends, the distinction between copy-number states will blur.

To examine this, we generated a histogram of the normal-
ized read-count distribution for the CTC and T10 data sets 
(Supplementary Fig. 8). We also mapped the distributions of 
bin counts for representative cells: excellent, typical and lower-
quality cells, as well as the highest-quality population average 
(Supplementary Fig. 9). All T10 profiles had distinct peaks  

representative of integer copy-number values. Although a  
few cells in the CTC data set had distinct peaks, many of the 
CTC profiles had considerably worse resolution with substan-
tial blurring between copy-number states. Furthermore, the 
scaled read-count distributions illustrated the substantial differ-
ence in signal-to-noise ratio between the T10 and CTC data sets 
(Supplementary Fig. 10).

Analysis of copy-number accuracy. To test the accuracy of the 
copy-number and clustering analysis by Ginkgo, we simulated 
single-cell sequencing of 90 cells with 100 total copy-number 
events per cell. We modeled the cells after a population compris-
ing nine distinct clonal populations, with ten cells per popula-
tion (Supplementary Fig. 11a). We began by generating three  
primary clonal populations by introducing 80 copy-number 
events compared to the parent diploid cell. Next, for each of the 
three primary clones, we generated three subclonal populations 
by introducing an additional 20 nonoverlapping copy-number 
events to the original clones. Overall, this resulted in nine  
distinct subclones belonging to three larger clonal populations 
with a total of 100 CNVs with respect to the human reference 
genome (hg19).

The genome positions of CNVs were nonoverlapping and gen-
erated from a uniform random distribution across the genome. 
The lengths of CNVs were generated from an exponential dis-
tribution with a mean of 5 Mb and ranged between 200 kb and  
20 Mb to approximate the CNVs observed in the genuine data. 
The copy-number states of the CNVs were generated from a 
Poisson distribution with a mean of 2.5, excluding the value 2.

We generated ten cells from each of the nine subclones (90 
cells in total) by simulating reads from the subclone reference 
sequences. For each cell, we simulated 200,000 101-bp, single-
end reads from the subclone reference sequence using dwgsim 
(https://github.com/nh13/DWGSIM) (dwgsim -n 101 -z -1 -e 0.01 
-d 1 -r 0 -1 101 -2 0). For each cell, the simulated reads were then 
mapped to the hg19 human reference genome using the com-
mand “bowtie hg19.fa -S -t -m--best -strata” and filtered for only 
uniquely mappable high scoring reads (quality > 25). The SAM 
output was then converted to BED format, and all 90 cells were 
uploaded and analyzed directly in Ginkgo with variable-length 
50-kb bins.

Ginkgo is able to accurately reproduce the population struc-
ture through hierarchical clustering (Supplementary Fig. 11b). 
In addition, we examined Ginkgo’s ability to call CNVs by exam-
ining the false negative and false positive rates for all 90 cells 
at three different read counts (2 million, 1.5 million and 1 mil-
lion) across three different bin sizes (100 kb, 50 kb and 25 kb) 
(Supplementary Table 2). We measured a 0.15% false negative 
rate and a 0.08% false positive rate, excluding those bins that 
were partially spanned by a copy-number alteration. When the 
entire genome was considered, including partially spanned bins, 
Ginkgo still had only an ~2% false negative rate and ~1.2% false 
positive rate. Hence, as expected, errors were almost exclusively 
concentrated at the boundaries of CNVs where the precise end of 
the event could not be determined because of the extremely low 
coverage available or partial spanning of a bin.

We compared these results to the widely used CNVnator29 
algorithm (http://sv.gersteinlab.org/cnvnator) for bulk sequenc-
ing CNV analysis and found that Ginkgo performed CNV calls 
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with higher accuracy (Supplementary Table 2). Furthermore, 
CNVnator and other bulk sample analysis programs do not 
attempt to assign integer copy-number states, but in this analysis 
we measured Ginkgo’s accuracy with this stricter requirement, 
whereas for CNVnator we could evaluate only whether an ampli-
fication or deletion had been identified. Ginkgo also has numer-
ous features for evaluating population-wide CNV relationships 
(heat maps and hierarchical clusters, multisample GC and Lorenz 
plots, etc.) that are also not present in CNVnator or other bulk 
sample programs that we could not evaluate. Finally, in a practical 
sense, we found Ginkgo to be substantially faster than CNVnator, 
requiring a few hours via a simple web interface, rather than many 
days in a very difficult-to-install console program for the 90-cell 
evaluation.

We further evaluated Ginkgo’s accuracy by means of a 
detailed comparison to the results presented by McConnell  
et al.3 (Supplementary Note 1). That study profiled CNV events 
in human induced pluripotent stem cell–derived fibroblasts and 
110 frontal cortex neurons and found a wide degree of mosaic 
copy-number variation. They reported a total of 148 CNVs across 

45 of the 110 sequenced cortical neurons using DOP-PCR–based 
single-cell sequencing and their own analysis pipeline. When 
we processed the same data with Ginkgo, we found 99.7% bin-
level concordance between the two analysis pipelines, including 
a very high correlation (R2 = 0.996) between the copy-number 
assignments of the predicted CNVs (Supplementary Fig. 12a).  
We investigated the disagreement between the pipelines and 
found that it was primarily due to differences in analyzing repeti-
tive sequences (Supplementary Fig. 12b) or differences in inter-
nal thresholds (Supplementary Fig. 12c). In a final assessment,  
we found that Ginkgo was able to correctly identify the  
major populations in the study by Lu et al.9 and separated  
X chromosome–carrying sperm, Y chromosome–carrying  
sperm and aneuploid cells (Supplementary Fig. 13).
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