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Abstract  
Regulated changes in DNA methylation occur during normal development and 
contribute to the stability of epigenetic states.  Aberrant methylation is associated 
with disease progression and is a common feature of cancer genomes. 
Presently, few methods enable quantitative, large-scale, single-base resolution 
mapping of DNA methylation states in desired regions of a complex mammalian 
genome. Here, we present an approach that combines array-based hybrid 
selection and massively parallel bisulfite sequencing to profile DNA methylation 
in genomic regions spanning hundreds of thousands of bases. This single 
molecule strategy enables methylation variable positions to be quantitatively 
examined with high sampling precision. Using bisulfite capture, we assessed 
methylation patterns across 324 randomly selected CpG islands (CGI) 
representing more than 25,000 CpG sites. Using a single lane of Illumina 
sequencing, methylation states could be definitively called for >90% of target 
sties. The accuracy of the hybrid-selection approach was verified by spot 
checking using conventional capillary sequencing of PCR products from bisulfite 
treated DNA from the same specimens. This confirmed that even partially 
methylated states could be called successfully. A comparison of human primary 
and cancer cells revealed multiple differentially methylated regions.  More than 
25% of islands showed complex methylation patterns either with partial 
methylation states defining the entire CGI or with contrasting methylation states 
appearing in specific regional blocks within the island.  
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Introduction 
 
It has long been known that changes in cellular and organismal characteristics 
can be inherited without accompanying alterations in genomic sequence 
(Waddington 1942). This phenomenon, known as epigenetic inheritance, has 
been proposed to occur through a number of mechanisms, including histone 
modification and DNA methylation (Holliday and Pugh 1975).  
 
In mammals, DNA methylation is observed mainly at CpG dinucleotides.  This 
modification is propagated via a maintenance methyltransferase, Dnmt1 (Bestor, 
Laudano et al. 1988), which preferentially recognizes and modifies hemi-
methylated CpGs (Bestor 1992). While the vast majority of CpGs are methylated 
in differentiated mammalian cells (Bird and Taggart 1980), most methylation 
undergoes waves of erasure and reestablishment during gametogenesis and 
preimplantation development (Chaillet, Vogt et al. 1991; Monk, Boubelik et al. 
1987; Sanford, Clark et al. 1987). The re-establishment of methylation is carried 
out by de novo methyltransferases, Dnmt3a and Dnmt3b (Okano, Xie et al. 
1998).  
 
Although CpG dinucleotides are significantly underrepresented in mammalian 
genomes, certain regions are relatively rich in CpGs, called CpG islands (CGIs; 
(Bird 1986)). While CGIs are found throughout the genome, they are often 
associated with promoter regions, with over 70% of annotated genes having CGI-
related promoters (Saxonov, Berg et al. 2006). Hypermethylation of promoters is 
correlated with heterochromatin formation and silenced transcription (Keshet, 
Lieman-Hurwitz et al. 1986).  
 
Studies of dnmt1- and dnmt3-mutant mice indicate an essential role for 
methylation in normal development (Li, Bestor et al. 1992; Okano, Bell et al. 
1999). Current models suggest that the regulated and mitotically inherited 
methylation of specific genomic regions, through the developmental history of a 
cell, functions to restrict potency and guide cell fate (Reik 2007; Shen, Kondo et 
al. 2007).  Aberrant DNA methylation is associated with disease development 
and progression.  
 
Despite its importance, mechanisms that guide DNA methylation and the 
biological impact of global modification patterns remain poorly understood, due in 
part to the limitations of current methylation profiling technologies. Current 
profiling methods can be classified roughly into two categories, those that 
measure methylation at high nucleotide resolution for a modest number of 
genomic intervals and those capable of surveying the whole genome at low to 
moderate resolution.  
 
Existing genome-wide approaches typically involve comparative microarray 
hybridization following fractionation of the genome based upon methyl-cytosine 
specific antibodies/protein complexes (MeDIP, MIRA) or methylation responsive 
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enzymes (e.g., MspI/HpaI or McrBc) with sites in CpG-rich regions (Khulan, 
Thompson et al. 2006; Lippman, Gendrel et al. 2004; Rauch, Wu et al. 2009; 
Shen, Kondo, Guo, Zhang, Zhang, Ahmed, Shu, Chen, Waterland and Issa 2007; 
Weber, Davies et al. 2005). The sensitivity of the enzymatic approach is limited 
by the sequence context of the digestion site and by the number of sites 
available. Moreover, microarray-based approaches produce an average 
snapshot of methylation across genomic windows. As a result, resolution of 
methylation states at individual sites is generally imprecise and can be strongly 
influenced by CpG density and fragment size (Irizarry, Ladd-Acosta et al. 2008). 
This drawback hampers the use of such methods for the analysis of imprinted 
loci and regions with complex methylation patterns.  
 
High-resolution strategies can distinguish methylation states in a semi-
quantitative, allele-specific manner at individual CpGs within a defined region. 
Established protocols that positively identify 5-methylcytosine residues in single 
strands of genomic DNA exploit the sodium bisulfite-induced deamination of 
cytosine to uracil. Under denaturing conditions, only methylated cytosines are 
protected from conversion. To measure methylation levels, bisulfite conversion 
has been combined with restriction analysis (COBRA) (Xiong and Laird 1997), 
base-specific cleavage and mass spectrometry (Ehrich, Nelson et al. 2005; 
Ehrich, Turner et al. 2008), real-time PCR (MethyLight) (Eads, Danenberg et al. 
2000) and pyrosequencing (Dupont, Tost et al. 2004). However, these methods 
are generally limited by their scalability and cost. 
 
Bisulfite sequencing represents the most comprehensive, high-resolution method 
for determining DNA methylation states. Like SNP detection, the accurate 
quantification of variable methylation frequencies requires high sampling of 
individual molecules. High-throughput, single-molecule sequencing instruments 
have facilitated the genome-wide application of this approach. For example, 
direct shotgun bisulfite sequencing provided adequate coverage depth and 
proved cost-effective for a small genome like Arabidopsis (119 Mbp) (Cokus, 
Feng et al. 2008). However, these approaches are currently impractical for 
routine application in complex mammalian genomes, and simplification of DNA 
fragment populations (genome partitioning) is still required to boost sampling 
depth of individual CpG sites (Meissner, Mikkelsen et al. 2008; Taylor, Kramer et 
al. 2007). This problem becomes compounded as one considers that, within a 
multicellular organism, there are probably at least as many epigenomic states as 
there are cell types.  Therefore, to understand the impact of epigenetic variation 
will require both detailed reference maps and the ability to interrogate regions of 
those reference maps in many samples and cell types at high resolution. Recent 
strategies for addressing methylation in large genomes have included enzyme 
directed reduced genomic representation (Brunner, Johnson et al. 2009; 
Meissner, Mikkelsen, Gu, Wernig, Hanna, Sivachenko, Zhang, Bernstein, 
Nusbaum, Jaffe et al. 2008) and padlock probe assisted multiplex amplification 
(Ball, Li et al. 2009; Deng, Shoemaker et al. 2009) followed by massively parallel 
sequencing.  
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To this end, we have developed bisulfite capture, a technology platform that 
combines bisulfite conversion with hybrid selection techniques and deep 
sequencing. Our profiling method is capable of achieving single nucleotide 
resolution while simultaneously examining methylation frequencies in tens of 
thousands of CpGs. Bisulfite capture directs focus to specified CpG regions in a 
highly parallelized process designed to selectively enhance sequence 
information content by deeper sampling of targeted bases. Unlike other reduced 
representation schemes, the selection process is independent of methylation 
status and the substrate may be tailored to include any unambiguous genomic 
interval. Here, we describe the application of this approach to determine DNA 
methylation frequencies in CGIs sampled from a variety of genomic settings 
including promoters, exons, introns, and intergenic loci. To discern the sensitivity 
of our approach to detect differential methylation patterns, bisulfite capture was 
carried out on two model cell lines, a primary skin cell line and a breast cancer 
cell line. For our study, 324 randomly selected CpG islands encompassing nearly 
300kb of genomic space and 25,000 CpG sites were examined in parallel. While 
global comparison of the two cell lines recapitulates previously described trends, 
detailed analysis reveals many examples of unexpected complexity in 
methylation states and instances where sharp transitions from methylated to 
unmethylated intervals could be finely mapped. Our results demonstrate the 
unique capacity of the bisulfite capture system to detect site-specific switches in 
methylation on a readily scalable, cost effective platform. 
 
Results 
 
Experimental Design 
 
Recently, others and we have described the use of custom microarrays as 
substrates for hybrid selection of high interest regions from complex genomes 
(Albert, Molla et al. 2007; Hodges, Xuan et al. 2007; Okou, Steinberg et al. 
2007). This massively parallel focused resequencing method permits 
identification of sequence variants within selected genomic intervals spanning 
thousands to millions of bases.  Here, we sought to adapt the same approach for 
the determination of DNA methylation states. To accomplish this, we integrated 
bisulfite conversion of genomic DNA into our capture scheme (Fig. 1).  
 
There are, in principle, several ways in which bisulfite conversion could be 
coupled with hybrid selection. One logical option would be to capture relevant 
regions of native genomic DNA followed by sodium bisulfite treatment and 
sequencing. However, this strategy has a major shortcoming in that the hybrid 
selection step requires large amounts of native, unamplified DNA to be readily 
available as input (Albert, Molla, Muzny, Nazareth, Wheeler, Song, Richmond, 
Middle, Rodesch, Packard et al. 2007; Hodges, Xuan, Balija, Kramer, Molla, 
Smith, Middle, Rodesch, Albert, Hannon et al. 2007; Okou, Steinberg, Middle, 
Cutler, Albert and Zwick 2007).  Substantial amounts of DNA can also be lost 
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during the harsh process of bisulfite conversion.  Because very small amounts of 
material are generally eluted from the capture arrays, bisulfite conversion post-
capture could restrict the number of individually sampled molecules for each 
variable methylation site.  Moreover, for many applications, we desired a method 
suitable for the analysis of relatively small cell numbers, such as tissue stem 
cells, or microdissected or laser-captured tumor cells. For these reasons, we 
developed a platform that permits the use of minimal amounts of starting 
material, subjecting these samples to bisulfite conversion and amplification prior 
to hybridization.  
 
We tested our approach using DNA from normal, dermal fibroblast cells (CHP-
SKN-1) commonly used as a reference in our microarray studies (Hicks, Krasnitz 
et al. 2006; Sebat, Lakshmi et al. 2004) and the invasive breast tumor cell line, 
MDA-MB-231 (ATCC# HTB-26). To prepare samples for sequencing on the 
Illumina GA2, genomic DNA libraries were generated as previously described 
with a few important modifications (Fig. 1). First, DNA fragments were ligated to 
Illumina-compatible adaptors synthesized with 5’-methyl-cytosine instead of 
cytosine to prevent their conversion by bisulfite treatment. A similar strategy was 
applied previously for shotgun bisulfite sequencing of the Arabidopsis genome 
(Cokus, Feng, Zhang, Chen, Merriman, Haudenschild, Pradhan, Nelson, 
Pellegrini and Jacobsen 2008). Second, following size selection and gel 
purification, the fragments were denatured and bisulfite converted, so that the 
status of each CpG site became fixed in the sample. Lastly, the adaptor-ligated 
fragments were PCR enriched with a polymerase capable of amplifying uracil-
rich templates. The amplification process produces ample amounts of input 
material for hybridization. Ultimately, the library preparation procedure generates 
four strands (Fig. 1). Two are derived from the original plus and minus strands of 
the genome. Since these were treated with bisulfite, they are depleted of C, and 
are designated the T-rich strands. The complements of the converted genomic 
strands are designated the A-rich strands.  

 
Array Design 
 
There are ~28,000 annotated CGIs in the human genome. CGIs are defined 
herein as intervals of >200bp with >50% GC content and significant CpG density 
(Gardiner-Garden and Frommer 1987). As CGIs are relevant targets for DNA 
methylation, we randomly selected 324 islands between 300-2000 bp 
representing 258,895 bases of genomic space and 25,000 CpG sites (~0.1% of 
all CpG sites in the genome). The set was distributed among all autosomes and 
chromosome X, including 170 islands located within 1500 bp upstream of 
annotated protein coding genes and 154 islands outside of annotated promoter 
regions, both intra- and intergenic.  
 
Bisulfite conversion creates a layer of variability between the reference genome 
and converted template. Therefore, our strategy required an array design that 
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anticipated the range of possible changes to DNA sequence resulting from 
cytosine depletion. Standard 60 nucleotide array capture probes are typically 
designed for one strand of the genomic template (Hodges, Xuan, Balija, Kramer, 
Molla, Smith, Middle, Rodesch, Albert, Hannon et al. 2007). However, bisulfite 
conversion and amplification results in four strands comprising two unique 
double-stranded templates. In principle, it is possible to capture any of the four 
converted single strands.  For symmetric CpG methylation, capture of one of the 
four products should allow inference of a complete methylation map. However, 
there have been reports of asymmetric (non-CpG) methylation in some 
mammalian cell types (Haines, Rodenhiser et al. 2001). Although not the focus of 
this study, detecting such modifications would require interrogation of products of 
both genomic strands.  Additionally, capturing more than one strand would 
increase coverage and thus confidence in determining methylation states, but the 
trade-off would be a reduction in the total genomic area that could be tiled on an 
array of a given capacity.  As a compromise, we chose to capture two strands, 
the A-rich derivatives of both plus and minus genomic strands (Fig. 1); however, 
depending upon the biological question, capture of one strand would certainly be 
sufficient. 
 
For each CpG island, two sets of capture probes were designed, one that 
assumed full methylation of all CpG residues, and one that assumed full 
conversion of CpGs to TpGs. Thus, even with a completely random pattern of 
CpG methylation, only half of the CpG sites within a given probe would contribute 
a mismatch. Previous studies have quantified the effect of mismatches on 
hybridization to 60 nucleotide probes printed on Agilent custom arrays (Hughes, 
Mao et al. 2001), the same selection substrate that we now use in our capture 
studies (Hodges et al., in press). These reports suggest that up to 6 distributed 
mismatches are tolerated without a substantial impact on hybridization efficiency. 
Our previous studies also indicated that the presence of SNPs did not impact the 
efficiency of capture (Hodges, Xuan, Balija, Kramer, Molla, Smith, Middle, 
Rodesch, Albert, Hannon et al. 2007). Therefore, we were confident that efficient 
hybridization could be achieved despite uncertainty in the exact sequence of the 
A-rich target strands. The mean number of CpGs within probe sequences to the 
324 selected CpG islands is 4.68, and the maximum in any probe is 15. Thus, 
the vast majority of probes are well within the predicted margin of safety for 
efficient capture (Fig. S1). The designed 60 nucleotide selection probes were 
tiled every six bases across our contiguous target intervals and synthesized on 
Agilent 244k arrays.  
 
 
Mapping bisulfite treated reads 
 
Mapping short sequenced reads requires identifying the genomic locations at 
which the reference sequence most closely matches that of the read. A small 
number of mismatches are typically allowed, and when the best match for a 
given read occurs at two distinct locations, that read is said to map ambiguously. 
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We infer methylation states only from reads with unambiguous mappings. 
Bisulfite sequence conversion presents a significant challenge to mapping short 
reads because the inherent information content of converted DNA is reduced. 
Since we capture the A-rich strand, and sequence its complement, a T observed 
in a read may map to a T or a C in the reference genome. 
 
We developed an algorithm for rapidly mapping bisulfite treated reads while 
accounting for both the C to T conversion at unmethylated cytosines and for the 
retention of C when a residue is either protected from conversion or unconverted 
by chance. Our algorithm is based on RMAP (Smith, Xuan et al. 2008) and 
follows the conventional strategy used in approximate matching.  First, we used 
an “exclusion” stage, requiring candidate mapping locations to have an exact 
match to the read in a specific subset of positions (“seed” positions). Because the 
exclusion stage used exact matching, it assumed all Cs in both read and genome 
sequences have been converted to T. This assumption resulted in a substantial 
loss of efficiency to the exclusion, and we compensated for this loss by designing 
tiled seeds. This had the effect of the multiple filtration strategy of Pevzner & 
Waterman (Pevzner and Waterman 1995) but permitted a highly efficient 
implementation. In contrast with mapping methods that preprocess the genome, 
this strategy required relatively little memory and was therefore appropriate for 
use on nodes of scientific clusters commonly used for analysis of sequencing 
data.  
 
The algorithm was also designed to take advantage of sequencing quality scores 
by assigning fractional mismatch penalties based upon the certainty of a base 
call and by taking into account the fact that a large fraction of Cs are converted to 
Ts (Figure 2B). For example, in the comparison of site A versus site B in Figure 
2, a clear high quality call of G, C or A resulted in a strong penalty for any 
mismatch. A less high quality call of G, C or A provided an intermediate penalty 
whose quantitative weight was a function of the individual probabilities of each 
alternative call (e.g. Figure 2B, site B, position 2). Since we were sequencing 
bisulfite converted DNA, potential T calls had a nearly equal probability of 
originating from a genomic T or C. Thus, for cases in which there was a higher 
probability of a T call than a C call, the lower mismatch penalty for T was also 
assigned to C (e.g., Figure 2B, site B, position 4). A detailed description of the 
algorithm, along with a discussion of how to exploit unconverted cytosines 
without introducing bias, is given in Supplementary Information. 
 
Following bisulfite capture, deep sequencing of the CGI-enriched material 
generated 20,002,407 raw 36 base reads for MDA-MB-231 and 55,770,254 for 
CHP-SKN-1 cells (Table 1). Using our mapping algorithm, unique genomic 
locations were assigned to 7,575,990 and 12,130,697 reads for tumor and 
normal cells, respectively. We used stringent criteria in mapping, permitting the 
equivalent, in terms of quality scores, of at most one mismatch per 36-base read. 
A standard sequencing run on unconverted DNA generally yields 50-60% 
uniquely mappable reads. In this case, the unsuccessful assignment of more 
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than half of the reads can be attributed to a combination of highly stringent 
mapping criteria, reduced sequence complexity following bisulfite conversion, 
and poor read quality in some Illumina runs. The effect of read quality was also 
reflected in a comparison of the two samples. The number of sequenced reads 
and the proportion of those that mapped differed substantially between the 
samples, which were sequenced on different flow cells. We determined that the 
total number of mapped reads was sufficient for our experiments, allowing us to 
investigate the performance of our protocol even when limited data is available. 
Overall, 6.43 to 11.98% of the reads mapped unambiguously within the targeted 
CpG islands, corresponding to a substantial enrichment of 711- to 1324-fold for 
the selected regions from total genomic DNA (Table 1).  
 
 
Methylation Status of Individual CpGs 
 
An important indication of success for bisulfite capture was that sufficient 
coverage of the targeted bases was achieved with minimal amounts of 
sequencing. Using a single Illumina flow cell lane to sequence captured material, 
86-91% of the targeted nucleotides were covered by at least 10 reads for each 
cell line. This is sufficient depth for a confident measure of methylation frequency 
(see below). It should be noted, however, that both coverage and enrichment 
rates likely underestimate the performance of the approach, since certain reads 
from within the target areas cannot be uniquely mapped. For an estimate of the 
extent of such “dead zones” and their relationship to read length, see 
Supplementary Table 1. 
 
Variations in coverage depth, the relatively high rate of sequencing error and the 
fact that individual cytosine residues can be both methylated and unmethylated 
within a given population of cells necessitated rigorous statistical methods for 
calling methylation status. We started with two values: the fraction of 
unconverted cytosines mapping over a CpG and the total number of reads 
mapping over the CpG. For these studies, we focused on symmetric CpG 
methylation and therefore collapsed information obtained from both genomic 
strands. All reads having anything other than a C or T at a given CpG were 
excluded from analysis. Thus, the “methylated proportion” was defined as the 
number of reads with a C at a given CpG divided by the number of informative 
reads. We calculated confidence intervals for the methylated proportion 
according to Wilson (Wilson 1927) and used these in conjunction with the 
methylated proportion to call methylation status. Our method assigned 
methylation states of unmethylated, methylated, partially methylated, or “no call” 
(to indicate insufficient information). See Methods and Figure S2 for details. 
 
This strategy resulted in confident calls for the vast majority of CpGs in the 
islands we examined. Increasing sequencing depth would generally increase the 
number of confidently called CpGs. Of the 25,044 CpG dinucleotides investigated 
in this analysis, 91.6% in MDA-MB-231 and 92.1% in CHP-SKN-1 could be given 
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a confident call, either methylated, unmethylated or partially methylated, using 
the stringent criteria outlined above (Table 2). In both samples, a majority of CpG 
sites was called either methylated or unmethylated, with only 7% and 12% 
classified as partially methylated in the normal and tumor cells, respectively. A 
comparison of methylation frequencies between the two samples showed that 
the state of many CpG sites closely corresponded in both cell types (Fig. 3A). Of 
the discordant calls, a higher number were either fully or partially methylated in 
the tumor sample (Table 3, Fig. 3A). It is notable that among the 22,684 CpGs 
receiving a confident call in both samples, only 0.2% were called methylated in 
the normal cell line and unmethylated in the tumor cell line, while 10.3% were 
unmethylated in CHP-SKN-1 and methylated in MDA-MB-231. 
 
Significant correlation between the methylation states of adjacent CpG sites and 
a high incidence of short-range comethylation has been reported previously 
(Eckhardt, Lewin et al. 2006; Irizarry, Ladd-Acosta, Carvalho, Wu, Brandenburg, 
Jeddeloh, Wen and Feinberg 2008). Therefore, we examined the methylation 
state of one CpG site as a function of methylation at the subsequent CpG site 
within our selected CGIs (Fig. 3B, 3C). There was clearly autocorrelation of 
methylation frequencies through a CGI (0.949 for MDA-MB-231; 0.944 for CHP-
SKN-1). Specifically, if a CpG is highly methylated, then the neighboring CpG is 
more likely to be methylated, and vice versa (Fig. 3B, 3C). Furthermore, the 
concentration of points along the diagonal indicates that partially methylated 
CpGs are also highly autocorrelated within islands, and will therefore likely reside 
in a neighborhood of partial methylation.  
 
To validate the accuracy of results obtained with hybrid selection and single 
molecule sequencing, we selected four CGIs to profile independently with 
traditional bisulfite cloning and sequencing. The CGIs were specifically selected 
to validate estimates of intermediate methylation frequency. For each of the four 
CGIs, multiple overlapping PCR products were generated from the bisulfite 
converted tumor cell line DNA. Purified amplicons were cloned, and individual 
colonies were sequenced by traditional capillary sequencing, generating 202 high 
quality reads. The methylation status of each CpG within each sequenced clone 
is depicted in Figure 4, along with histograms of CpG methylation frequencies for 
both traditional bisulfite cloning and bisulfite capture. Excluding the region in 
Figure 4A, for which too few traditional bisulfite reads were obtained, the 
methylation frequencies estimated from both methods correspond very closely. 
We obtained 90% confidence intervals on the methylation proportion at 62 CpGs 
using traditional bisulfite reads. The confidence intervals overlapped those based 
on the bisulfite capture at 81% of the CpGs (see Supplementary Table 2). Of the 
12 for which the intervals did not overlap, the methylation level estimated using 
bisulfite capture was closer to 50% on all but two CpG sites. This demonstrates 
that the hypo/hyper-methylated probe-pair strategy used in bisulfite capture does 
not bias the capture towards extreme states. In addition, these results also 
indicate that the higher sampling rates achieved with capture and single molecule 
sequencing contribute to higher accuracy in calling methylation status. 
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Patterns of CpG Island Methylation 
 
Changes in DNA methylation patterns have been associated with a number of 
human diseases, and aberrant DNA methylation contributes causally to 
tumorigenesis. For example, a significantly elevated proportion of somatic 
mutations in the tumor suppressor p53 have been found at CpG sites (Rideout, 
Coetzee et al. 1990). Moreover, tumor genomes are generally hypomethylated, 
which may contribute to genome instability, perhaps in part by releasing 
constraints on mobile genetic elements (Lengauer, Kinzler et al. 1997). The 
global reduction in methylation is accompanied by hypermethylation of individual 
CGIs, some of which are associated with tumor suppressor genes (Herman and 
Baylin 2003).  
 
We, therefore, compared patterns of CpG methylation in our normal fibroblast 
and breast tumor cell lines (Table 4). Consistent with previously observed trends, 
the distribution of CpG methylation frequencies was largely bimodal (Fig. S3-S4, 
Fig. 5) with more CGI CpGs in the tumor cell line exhibiting high methylation 
frequency as compared to the normal fibroblast sample. The aggregate results 
on individual CpGs in our sampled islands suggest a picture of mostly 
unmethylated CGIs in the normal cell line and elevated methylation in the tumor 
cell line. While a little over half of the islands fall into expected categories of fully 
methylated or fully unmethylated, a surprising number of CGIs displayed more 
complex methylation profiles.  A closer inspection of the individual islands, 
examples of which are shown in Figure 5 and Figure S5, revealed a rich 
substructure in many islands that might not be apparent without their examination 
at the sequence level.  
 
Around 54% of the CGIs showed clearly defined and consistent methylation 
states across the entire island in both samples. The most common were 
‘unmethylated’ islands, with few CGIs assigned as methylated in either the MDA-
MB-231 or the CHP-SKN-1 sample (143 cases) (Fig. 5A). A smaller subset (31 
cases) showed nearly complete methylation in both samples (Table 5, Fig. 5B). 
We observed 15 cases that were virtually unmethylated in CHP-SKN-1 but 
completely methylated in the tumor line, as exemplified by the island at the 
transcription start site (TSS) of the cell adhesion associated gene FLRT2 (Fig. 
5C). We did not observe the converse, where a completely methylated island in 
CHP-SKN-1 was completely unmethylated in MDA-MB-231; however, there were 
multiple cases in which methylation was clearly reduced in the tumor line, either 
in sub-regional blocks or across an entire island (Fig. 5).  For about 13% of the 
islands in this study (41/324), states could not be assigned because all or a large 
portion of the island overlapped repetitive elements in the genome, and a 
sufficient proportion of reads could not be uniquely mapped. 
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Approximately 28% (92 cases) of the investigated CGIs displayed methylation 
signatures other than simple all or none methylation across the island. These 
heterogeneous profiles appear in two distinct topologies. First, mixed methylation 
assignments for individual CpG sites give rise to partial or intermediate 
methylation, either across the whole island or in sub-regional blocks (Fig. 5D, E, 
F, and H). This pattern is exemplified by an island located near the 3’ end of 
KCNQ2, a putatively imprinted gene (Luedi, Dietrich et al. 2007), where both 
samples are partially methylated across the entire island (Fig. 5D). Note that the 
solid gray bars at the ends of the island represent unassigned CpGs due to their 
location in the repetitive sequence that often flanks CpG islands. A CGI 
overlapping the HOXB4 promoter and lying in the HOXB3 transcript appears to 
be partially methylated in SKN-1, consistent with its prediction to be imprinted 
(Luedi, Dietrich, Weidman, Bosko, Jirtle and Hartemink 2007), but is fully 
methylated in MDA-MB-231, consistent with reports that HOX clusters are often 
methylated in breast cancer (Fig. 4 E, (Rauch, Wang et al. 2007)).   
 
A second topology is defined by sharp transitions from one methylation state to 
another within an island (Fig 5F, G, H, and I). Figures 5G-I illustrate such 
structural complexity. Many islands showed some degree of methylation in 
localized, contiguous blocks. These switches are striking and often define 
domains of the CGI with respect to methylation. In a number of cases these 
regions, or blocks of methylation, occupy the same position in both samples. 
These observations indicate the presence of ‘punctuation marks’ within CpG 
islands that likely reflect underlying biological mechanisms. 
 
We noted that islands displaying these transitions often overlap transcription start 
sites (TSS) and exon junctions. As examples, for islands spanning significant 
portions of the SSTR4 and RASGRF2 genes, the transitions in methylation occur 
around or close to the TSS. Likewise, the CGI fully overlapping the GLTPD2 
gene locus contains a short domain of mostly methylated CpGs in CHP-SKN-1 
that covers the 5’UTR of the gene. Interestingly, the transition to hypomethylation 
closely corresponds with the first coding exon of the gene. One might speculate 
that the positions of breakpoints between domains of high methylation and 
neighboring domains of low methylation may be influenced by gene regulatory 
mechanisms and local genome structure. The overall biological significance and 
correlation of such patterns with expression state have yet to be determined.  

To complement the comprehensive overview of methylation states in the two cell 
lines, we also categorized CpG methylation by genomic annotation, examining 
promoter-associated, genic, and intergenic sites  (Figure S6, Supplementary 
Table 5). As expected, the fibroblast cells displayed a higher number of fully 
unmethylated CpGs/CGIs in each of the specified regions and the tumor cell line 
had consistently higher methylation. Notably, for promoter regions the highest 
proportion of differentially methylated CGIs was heterogeneously methylated in 
MDA-MB-231. A significant fraction of intragenic CGIs was methylated to some 
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degree in both cell lines, and nearly half of the intragenic CGIs in MDA-MB-231 
were fully methylated. 
 
We examined the relationship between dinucleotide frequencies and overall 
methylation in CGIs. Consistent with earlier reports, a strong negative correlation 
(-0.39 in CHP-SKN-1 and -0.32 in MDA-MB-231) between CpG density and total 
CGI methylation was observed (Zhang, Rohde et al. 2009). However, we also 
observed a strong positive correlation (0.69 in CHP-SKN-1 and 0.54 in MDA-MB-
231) between CA/TG frequency and total methylation of the CGIs. Furthermore, 
sharp cutoffs for frequencies of these dinucleotides can accurately distinguish 
hypomethylated islands from those showing partial or full methylation, with both 
strong sensitivity and specificity (see Supplementary Tables 3-4 and Supp. 
Methods). This suggests existing definitions may not accurately capture the 
relationship between CpG density and protection from CpG depletion over 
evolutionary time scales. It is likely that more sophisticated definitions, which may 
account for characteristics beyond base composition, will be required to define 
the underlying evolutionary phenomena that produce CGIs. 
 
Discussion 
 
Existing methods for profiling DNA methylation are largely CGI centric and fail to 
examine methylation in regions beyond those defined as canonical islands (or 
islands significantly enriched in CpGs). However, the bisulfite capture method is 
readily programmable, and with the sensitivity and scale achieved here, this 
approach could be extended to any non-repeat, CpG-containing region in the 
genome, regardless of CpG density. Bisulfite sequencing of cloned DNA 
fragments is a well-established gold standard for mapping methylation at high 
resolution, as exemplified by a recent study of DNA methylation across gene 
promoter regions on human chromosome 21 (Zhang, Rohde, Tierling, Jurkowski, 
Bock, Santacruz, Ragozin, Reinhardt, Groth, Walter et al. 2009). This study 
highlights many of the same features of DNA methylation discussed here. In fact, 
our method is designed to provide a similar high level of resolution for hundreds 
of genomic regions without the need for creating individual PCR amplicons and 
sequencing individual clones. It is currently very costly to perform clone 
sequencing on the scale necessary to sample thousands of sites in multiple 
individual samples. Bisulfite capture provided both qualitative and quantitative 
methylation measurements that were nearly identical to bisulfite sequencing 
while permitting the highly parallel analysis necessary to understand the 
biological impact of changes across the epigenome in many cell types and/or 
individual specimens. 
 
Our approach requires no a priori knowledge of the methylation state of target 
loci. By designing probes corresponding to extreme states, with all CpGs in the 
target region either fully methylated or unmethylated, we created a probe set that 
would sufficiently hybridize the selected regions, even if CpG dinucleotides in 
target fragments were methylated randomly. Since most studies find local 
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correlation between the methylation states of neighboring CpGs, the overall 
extent of the mismatch problem is likely to be much lower than the theoretical 
maximum we anticipated. Nevertheless, recovery of fragments containing both 
methylated and unmethylated residues provided clear evidence for the unbiased 
capture of molecules with mixed methylation states. Independent validation using 
conventional bisulfite sequencing of regions with partial methylation frequencies 
verified that our approach did not significantly bias the determination of 
methylation patterns toward local uniformity in CpG status. 
 
Despite its initial success, our current protocol does have room for improvement 
in enrichment, completeness and uniformity of coverage.  While longer reads and 
increased sequencing depth will improve CpG calling to some extent, the largest 
gains will likely be made in probe design and array structure.  Presently, we 
capture two genomic strands.  However, it is clear that the number of target CpG 
can be doubled simply by assaying only one strand.  Moreover, array densities 
continue to increase.  Recently, the number of probes on the array platform we 
most commonly use has quadrupled.  Finally, we have covered the target CGIs 
at relatively high tiling density, and many improvements in probe design/selection 
are possible.  Without significant changes to our protocols, it is likely that a 10-
fold increase in covered sites can easily be achieved. Besides allowing larger 
target regions to be examined at greater coverage, more efficient capture arrays, 
when combined with sample indexing for multiplex captures, will enable targeted 
profiling of DNA methylation in large numbers of samples, opening the door to 
potential clinical applications (Laird 2003).  
 
We previously found that genomic repeats could confound efficient capture.  To 
combat this, we eliminate multicopy capture probes based upon average 
representation of their constituent 15mers in the genome.  Because of the 
reduction in complexity following bisulfite treatment, the same rules could not be 
directly applied and repeats were not suppressed in these initial studies.  
Moreover, inclusion of C0t-1 DNA in hybridizations improves enrichment in 
conventional captures.  Though we did use C0t-1 in these studies, it was 
unconverted and thus might not compete effectively with the repeat sequences 
present in our samples. 
 
Here, we examined clonal cell lines, whose methylation patterns are relatively 
homogeneous. Tissue-derived samples likely contain multiple methylation states 
at a given locus, in part because of imprinting and X-inactivation, but mainly 
because of cell-type heterogeneity in even the most purified populations.  Thus, 
variations in methylation patterns could represent a mixture of several distinct 
“epitypes”, each of which is a signature of the cell type from which it was derived. 
The depth of coverage achieved in bisulfite capture, combined with increases in 
read length, may permit assembly of such epitypes - a procedure analogous to 
metagenomic assembly.  Ultimately, approaches that deeply sample the 
epigenome at single-nucleotide resolution and at the single molecule level may 
allow us to detect the presence of rare stem cell populations and to track the 
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epigenetic reprogramming that correlates with the commitment and fate 
specification of such multipotent cells to differentiated cell fates. 
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Materials and Methods 
 
DNA Library Preparation and Bisulfite Conversion 
 
Genomic DNA libraries were generated as previously described with a few 
important modifications. Briefly, purified cell-line DNA was randomly fragmented 
by sonication and subsequently treated with a mixture of T4 DNA Polymerase, E. 
coli DNA polymerase I Klenow fragment, and T4 polynucleotide kinase to repair, 
blunt and phosphorylate ends according to the manufacturer’s instructions 
(Illumina). The repaired DNA fragments were subsequently 3’ adenylated using 
Klenow exo- fragment (Illumina). After each step, the DNA was recovered using 
the QIAquick PCR Purification kit (Qiagen). Adenylated fragments were ligated to 
Illumina-compatible paired-end adaptors synthesized with 5’-methyl-cytosine 
instead of cytosine (Illumina) and fragments ranging from 150-300 bp were 
extracted by gel purification using the QIAquick gel extraction kit (Qiagen) 
followed by elution in 30ul elution buffer. Following size selection and gel 
purification, the adapter-ligated DNA was divided into two separate reactions to 
ensure optimal DNA concentration for subsequent cytosine conversion reactions. 
Fragments were denatured and treated with sodium bisulfite using the EZ DNA 
methylation gold kit according to the manufacturer’s instructions (Zymo). Lastly, 
the sample was desulfonated and the converted, adaptor-ligated fragments were 
PCR enriched using paired-end adaptor-compatible primers 1.0 and 2.0 
(Illumina) and Expand high fidelity plus PCR system (Roche), a specialized 
polymerase capable of amplifying the highly denatured, uracil-rich templates. 
Following amplification, the samples were hybridized to both arrays and captured 
fragments were recovered and sequenced.  
 
 
CpG Island Array Capture 
 
20mg of bisulfite-treated DNA was hybridized to custom Agilent 244K 
microarrays according to the Agilent aCGH protocol with several modifications. 
Firstly, in addition to 20mg sample DNA, 50mg human c0t-1 DNA (Invitrogen) and 
Agilent blocking agent, Agilent aCGH/ChIP Hi-RPM hybridization buffer was 
supplemented with approximately 1 nmol each of four blocking oligonucleotides 
(IDT; see Supplementary Table 6) before denaturing at 95ºC. The samples were 
hybridized at 65ºC for 65h in a rotating microarray oven (SciGene). After 
hybridization, the arrays were washed at room temperature for 10 min with aCGH 
wash buffer 1 (Agilent) and washed with aCGH wash buffer 2 (Agilent) at 37ºC 
for 5 min. Slides were briefly dried at low speed in a slide rack using a centrifuge 
with a microplate adaptor. Captured bilsulfite-treated DNA fragments hybridized 
to the arrays were immediately eluted with 490ul nuclease-free water at 95ºC for 
5 min in the rotating microarray oven. The fragments were removed from the 
chamber assembly using a 181/2G syringe (BD). Samples were subsequently 
lyophilized and resuspended for amplification. Five 18-cycle PCR amplifications 
were performed in parallel for each eluate using Phusion HF PCR master mix 
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(Finnzymes). Following amplification, the PCR reactions were pooled and 
purified on Qiagen purification columns.  
 
 
Single Molecule Sequencing  
 
The DNA was quantified using the Nanodrop 7500 and diluted to a working 
concentration of 10 nM. Cluster generation was performed for samples 
representing each array capture in individual lanes of the Illumina GA2 flow cell. 
An adapter-compatible sequencing primer (Illumina) was hybridized to the 
prepared flow cell and 36 cycles of base incorporation were carried out on the 
Illumina GA2 genome analyzer.  
 
 
Conventional Bisulfite Cloning and Sanger Sequencing 
 
Specific regions of bisulfite treated CHP-SKN-1 and MDA-MB-231 DNA were 
PCR amplified and their products cloned and sequenced using conventional 
Sanger sequencing. Briefly, CHP-SKN-1 and MDA-MB-231 genomic DNA was 
bisulfite converted using the QIAGEN Epitect bisulfite kit according to 
manufacturer’s instructions. The forward and reverse primers were designed for 
the forward strand using the online primer design tool Methprimer (Li and Dahiya 
2002) followed by manual selection of primer sets to satisfy Tm and other 
requirements. Primer sequences are provided in Supplementary materials 
(Supplementary Table 7). Thermal cycling was performed as follows: 40 cycles 
each of denaturation at 92ºC for 50sec, annealing at 52ºC for 1 minute and 
extension at 72ºC for 1 minute followed by 10 minutes at 72ºC. The PCR 
products were analyzed on a 2% agarose gel and the reaction mixtures were 
purified using a PCR purification kit (Qiagen). Purified PCR products were 
subcloned into the pCR®2.1-TOPO® vector using the TOPO TA cloning kit 
(Invitrogen) according to the manufacturer’s recommendations. Clones were 
transformed into Top10 competent cells and subsequent colonies were isolated, 
cultured overnight, and bacterial DNA was purified using the DirectPrep®96 
Miniprep kit (Qiagen) according to the provided instructions. The sequencing 
reaction was performed directly on the purified clones using the M13 Forward 
and Reverse primers and BigDye version 3.1 DyeDeoxy terminator reaction 
mixture (Applied Biosystems). Sequences were analyzed on a 3100 genetic 
Analyzer (Applied Biosystems).  
 
Computational data analysis 
 
Reads were mapped with the RMAPBS program, freely available from the 
authors as Open Source software under the GNU Public License. A suite of 
software tools was implemented (also available from the authors) to estimate 
methylation frequencies of individual CpGs, tabulate statistics about methylation 
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in each CpG island, and compile diagnostic statistics about bisulfite capture 
experiments. Details are provided in Supplementary Information. 
 
Enrichment was computed as (reads mapped to genome/reads overlapping 
target regions) / (size of target regions/size of mappable genome). The bisulfite 
conversion rate was estimated as the ratio of thymines over the sum of cytosines 
and thymines mapping over genomic non-CpG cytosines. Bisulfite conversion 
rate was determined using reads mapping anywhere in the genome. Coverage 
was determined by counting the number of reads mapping over each base in the 
target regions. 
 
Assigning CpG methylation status 
 
Methylation status of individual CpGs were called using the frequency of 
methylated reads mapping over each CpG and the total number of reads 
mapping over the CpG, making use of a Binomial confidence interval. If the 
upper 0.95 confidence bound was less than 0.25, then we called that CpG 
unmethylated in the sample. If the lower 0.95 confidence bound was at least 
0.75, then we called that CpG methylated in the sample. For the remaining 
CpGs, if the difference between the upper and lower 0.95 confidence bounds 
was less than or equal to 0.25, then we called the CpG “partially methylated” in 
that sample. Regardless of the observed frequency of Cs and Ts mapping over a 
CpG, if the difference between the upper and lower confidence bounds was 
greater than 0.25, we concluded that a confident call could not be made. 
Additional details are given along with graphical description in Supplementary 
Methods and Figure S1. 
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Figure Legends 
 
Figure 1. Bisulfite capture procedure. Genomic DNA was randomly 
fragmented according to the standard Illumina protocol and ligated to custom-
synthesized adapters in which each C was replaced by 5-meC.  The ligation was 
size fractionated to select material from 150-300 bases in length.  The gel-eluted 
material was treated with sodium bisulfite (see Methods) and then PCR enriched 
using Illumina Paired-End PCR primers.  The resulting products were hybridized 
to custom-synthesized Agilent 244K arrays containing probes complementary to 
the A-rich strands.  Hybridizations were carried out with Agilent array CGH 
buffers under standard conditions. After washing, captured fragments were 
eluted in water at 95oC and amplified again prior to quantification and sequencing 
on the Illumina GA2 platform. 
 
Figure 2. Mapping bisulfite treated reads. (A) Reads were mapped to the 
reference genome by minimizing the number of potential mismatches.  Any T in a 
read incurred no penalty for aligning with a C in the genome, and any C in a read 
was penalized for aligning with a T in the genome. (B) Quality scores were 
converted to mismatch penalties by assigning a penalty of 0 to the consensus 
base, and penalizing non-consensus bases proportionately to the difference 
between their quality score and the consensus base score. A difference of 80 
(representing the maximum possible range at a single position) was equated with 
a penalty of 1. 
 
Figure 3. Distribution of CpG methylation frequencies. A pairwise 
comparison of methylation at individual CpG sites between the two samples is 
shown (A). For each sample, scatter plots of the proportion methylated for each 
CpG (x-axis) and the subsequent neighboring CpG within an island (y-axis, 
CpG+1) is displayed (B, C). This analysis was restricted to those CpGs with at 
least 40 reads in both samples.  
 
Figure 4. Methylation status of bisulfite sequenced clones.  Four 
independent CGI loci are shown. Two histograms plot methylation frequencies at 
individual CpG sites for both the bisulfite capture data (upper) and the 
conventional bisulfite cloning data (lower) for all four loci (A-D). The block 
diagrams illustrate methylation state at each CpG site for each individually 
analyzed clone. 
 
Figure 5. Patterns of methylation in CpG islands. Graphical representation of 
methylation patterns in 9 CpG islands. A pair of graphics represents each CpG 
island, one graphic for each sample (CHP-SKN-1 on top, MDA-MB-231 below). 
Each graphic shows a pair of plots, both with bars indicating the amount of 
methylated (yellow) and unmethylated (blue) reads mapping over each CpG. The 
upper plot shows the absolute numbers of reads and spacing between CpGs. 
The lower plot shows the proportions of methylated and unmethylated reads. 
Confidence intervals are indicated in grey, and the yellow bar inside the 
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confidence interval indicates the exact methylation frequency. Similar plots for 
the remaining CGIs are given in Figure S5. 
 
Supplementary Figure S1. Method of calling CpG methylation status. Calls 
were determined by considering both methylation rates of reads mapping over 
the CpG and the width of the 95% confidence interval for the estimate. (A) CpGs 
for which the confidence interval was contained below 0.25 were called 
unmethylated; (B) CpGs for which the confidence interval was entirely above 
0.75 were called methylated. Partial methylation was called confidently if the 
confidence interval had width smaller than 0.25 (C) and no call was made if the 
interval was wider than 0.25 (D). 
 
Supplementary Figure S2. Distribution of maximum probe distances. The 
numbers of capture array probe pairs (y-axis) as a function of the number of the 
maximum number of possible mismatches relative to the sequence the probe 
pairs were designed to detect. This number is equal to half the number of CpGs 
in the probe. 
 
Supplementary Figure S3. Distribution of CpG methylation frequencies. 
Histogram showing frequencies of methylation proportions at individual CpGs. 
Black bars represent data from the normal skin cell line (CHP-SKN-1). Gray bars 
represent data from breast tumor line MDA-MB-231. Only CpGs covered by 
sufficient reads to make a confident call at a frequency of 0.5 (at least 41 reads) 
were included (see Supplementary Methods for details). 
 
Supplementary Figure S4. Distribution of CGI methylation frequencies. The 
histogram shows frequencies of methylation proportions in CGIs. Black bars 
represent data from the normal skin cell line (CHP-SKN-1). Gray bars represent 
data from breast tumor line MDA-MB-231. Only CGIs for which 90% of the CpGs 
were covered by at least one read were included (see Supplementary Methods 
for details on assigning methylation frequencies to CGIs). 
 
Supplementary Figure S5. CGI methylation profile plots. Methylation profile 
plots for all 324 CGIs examined, identical to those presented for selected 
examples in Figure 5. 
 
Supplementary Figure S6. Comparative changes in CGI methylation states 
based on genomic location. The promoter class was defined as a CpG located 
within 1Kbp upstream of the TSS. Likewise, the CGIs overlapping the 1Kbp 
promoter were also counted. The intragenic class was defined as anything that 
overlaps the transcript, which is defined to start 1Kbp 3' of the actual start, so not 
including the promoter as defined above. For the intergenic category, all bases 
not covered by a transcript were included, with transcripts expanded by 1Kbp. 
The numbers shown are counts of CpGs that are contained within these 3 kinds 
of regions, and the numbers for CGIs are for those that overlap the above 3 kinds 
of regions. Because a CGI can overlap both a promoter and an intergenic region, 
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the combined categories will sum to more than 324 for each particular 
methylation state. 
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Table Legends 
 
Table 1. Bisulfite capture statistics. 
Statistics describing data from various stages of the bisulfite capture experiment. 
See Methods section for definitions of each value. 
 
Table 2. CpG methylation call frequencies. 
Summary of methylation states determined for individual CpGs in the CHP-SKN-
1 and MDA-MB-231 samples. See Methods section for criteria used to assign 
these calls. 
 
Table 3. Comparison of CpG calls. 
Numbers of CpGs having each combination of calls in the two samples. 
 
Table 4: CGI methylation call frequencies. 
Summary of methylation states determined for CpG islands in the CHP-SKN-1 
and MDA-MB-231 samples. See Supplementary Methods for criteria used to 
assign these calls. 
 
Table 5: Comparison of CGI calls. 
Numbers of CGIs having each combination of calls in the two samples. 
 
Supplementary Table 1. Bisulfite dead zones. 
This table summarizes the portion of the genome and target regions covered by 
“bisulfite dead zones” for 36-base reads, assuming full bisulfite conversion, and 
for assumptions of full methylation and no methylation. 
 
Supplementary Table 2. Methylation frequencies inside validation regions 
The number of methylated and unmethylated reads mapping over each CpG 
inside the validation regions, for both traditional bisulfite sequencing and bisulfite 
capture. 
 
Supplementary Table 3-4. Correlation of CGI dinucleotide frequency with 
methylation frequency in CHP-SKN-1 and MDA-MB-231. 
 
Supplementary Table 5. Comparative changes in CGI methylation states 
based on genomic location. This table shows the numbers of CGIs having 
each combination of calls in the two samples with respect to their genomic 
location either in promoters, intragenic and intergenic regions. See Figure S6 for 
details regarding how these regions are defined. 
 
Supplementary Table 6. Blocking sequences 
This table lists the sequences of the oligonucleotides used to block adaptor self-
ligation in the hybridization mixture. 
 
Supplementary Table 7. Bisulfite Sequencing Primers 



 24 

This table lists the amplified loci and corresponding forward and reverse primers 
chosen for conventional bisulfite PCR and cloning. 
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Table 1. Bisulfite Capture Statistics.   
Sample CHP-SKN-1 MBA-MB-231 
Reads sequenced* 55,770,254 20,002,207 
Reads mapped (unambiguous) 12,130,697 7,575,990 
Reads in target region 780,471 907,592 
Percent mapped reads in target 6.43% 11.98% 
Enrichment 711.14 1324.14 
Target region coverage (at least one read) 94.23% 93.56% 
Target region coverage (at least 10 reads) 92.97% 92.50% 
Median read depth at target CpGs 95 105 
Bisulfite conversion rate** 98.85% 98.75% 

Target region size 258,571  
Genome size† 2,858,008,658  
Expected % mapped reads in target (i.e. uncaptured) 0.009%  

*Numbers represent sequenced data combined from multiple lanes (4 lanes for CHP-
SKN-1 and 2 lanes for MDA-MB-231). 
**Includes reads mapping outside target regions 
†Excludes unassembled regions larger than 1000 bases 
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Table 2. CpG methylation call frequencies.  
Sample CHP-SKN-1 MDA-MB-231 
Unmethylated 18398 73.46% 13456 53.73% 
Partially Methylated 2018 8.06% 3681 14.70% 
Methylated 2660 10.62% 5791 23.12% 
No Call 1968 7.86% 2116 8.45% 
 25044  25044  
     
Total called in CHP-SKN-1 23076 92.14%   
Total called in MDA-MB-231 22928 91.55%   
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Table 3. Comparison of CpG calls.     
 MDA-MB-231     

CHP-SKN-1 Unmethylated Partially Methylated Methylated No Call Total 
Unmethylated 13162 2588 2342 306 18398 

Partially Methylated 172 612 1198 36 2018 
Methylated 46 416 2148 50 2660 

No Call 76 65 103 1724 1968 
Total 13456 3681 5791 2116 25044 

      
Total called in both samples 22684     
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Table 4. CGI call frequencies.   
Sample CHP-SKN-1 MDA-MB-231 
Unmethylated 210 64.81% 145 44.75% 
Partially Methylated 31 9.57% 71 21.91% 
Methylated 42 12.96% 64 19.75% 
No Call 41 12.65% 44 13.58% 
 324  324  
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Table 5. Comparison of CGI calls.     
 MDA-MB-231 

CHP-SKN-1 Unmethylated Partially Methylated Methylated No Call Total 
Unmethylated 143 51 15 1 210 

Partially Methylated 2 10 18 1 31 
Methylated 0 10 31 1 42 

No Call 0 0 0 41 41 
Total 145 71 64 44 324 
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