Basics

- Molecules like rubber and plastic are arbitrarily long polymers of small molecules
- Think of them as *chains*.

- A simple chain, with only one repeating element, carries no information other than its length.
- The key molecules of biology are *heteropolymers*, involving several different repeating elements.
- Think of them as necklaces of *different* beads.
- Such molecules are strings capable of
 - carrying indefinite amounts of memory,
 - provided that they can be copied faithfully.

Three kinds of molecules play a role:

- DNA: Beads on a wire 4 kinds of beads -- the memory
- RNA: Beads on a string same 4 kinds of beads -- the messages
- Proteins: Magnets on a string 20 kinds : the *computing elements*
- The 4 kinds of 'beads' in DNA and RNA, which might be called - -1,+1,-2,+2, are conventionally A,T,C,G
- +n and -n 'beads' attract each other weakly, stabilizing combinations like
 - -1-1+1-2+2+1+2...
 or more conventionally
 AATCGTG...

 +1+1-1+2-2-1-2...
 TTAGCAC...
- So a molecule of Dna and RNA put into a 'soup' of A,T,C,G beads, with a suitable 'zipper' molecule will copy itself into its 'dual'.
 - All the basic large-molecule chemistry is linear.

Proteins from DNA

- The sequence of steps that lead from DNA to proteins, and the molecular machines that perform them, are:
 - DNA --(transcriptase)-> RNA --(splicers)-> edited RNA --(ribosomes) -> proteins
- Various of these enzymes are commercially available

- RNA editing and translation to proteins must still be done in cells ('vivo')
- DNA molecules can be very long (e.g. 2.5 Mb in *human*, 15Mb in *onion*)
- Unedited RNA molecules , copied from tagged sections of DNA, are typically 30-60Kb, reduced after editing to 1-2Kb, translated into proteins 300-600 beads long by 3-->1 *genetic code*. So only 3% of RNA survives editing, on average, and only half of DNA is ever transcribed to RNA.

What living cells must do

- A fourth basic activity of life is transfer of the *very large* DNA molecules into a new cell after they have been copied. (This is accomplished by a more complex sequence of steps.)
- A cell is a bubble containing DNA, RNA, and proteins, able to collect elements from the environment to make more, and able to transfer a copy of its DNA to a new cell copy once it has grown large enough. Cells can accumulate or secrete any kind of protein.
 - They must have polymerase to copy DNA, transcriptase to make RNA, ribosomes to make proteins, and an apparatus of division.
- Proteins exist within the cell as folded lumps
 - whose 'bumps' define their interactions
 - with each other and with DNA
- Viruses are simply protein-coated DNA
 - They cannot make proteins (no ribosomes)
 - And are therefore parasitic on cells for this
 - But they need no special division machinery

Means for reading DNA sequences are now available

- The start of the smallpox genome:
 - 1 atgattgtgt tattgatact atcgttagcg tgtacagcgt tcacctatcg cctgcaagga
 - 61 tttaccaatg ccggtatagt agcgtataaa aatattcaag atgggaatga ggatgataat
 - 121 attgtcttct cgccgtttgg ctattcgttt tctatgttta tgtcactatt gcctgcatca
 - 181 ggtaatacta aagtagaatt attgaagact atggatttga gaaaaataga tctgggtcca
 - 241 gcatttacag aattaatatc aggattagct aagccaaaaa catctaaata tacgtacact
- Start of a control protein gene determining male development in humans
 - 241 agaaggcgaa ggctgcaggc gtgaggagct gtgactaatg agaattaaag gccatggatg
 - 301 aagatgaatt tgaattgcag ccacaagagc caaactcatt ttttgatgga ataggagctg
 - 361 atgctacaca catggatggt gatcagattg ttgtggaaat acaagaagca gtttttgttt
 - 421 ctaatattgt ggattetgae ataactgtge ataactttgt teetgatgae ecagaeteag
 - 481 ttgtaatcca agatgttgtt gaagatgttg tcatagagga ggatgttcag tgctcagata
- These have the transparency and charm of hex code dumps
 - But can inspect for interspecies (e.g. human/mouse) and inter-individual differences (remote phylogeny)

Control

- Cells detect changes in their external and internal environment as changing molecular concentrations, which may cause some proteins to bend or otherwise reconfigure slightly, changing some significant 'bump'.
- The rate of production of each internal protein, and so its concentration, is controlled by the rate at which copying of its precursor RNAs from their DNA sources begin.
- For copying to begin, a 'copying machine' molecule (transcriptase) must be attracted to the start of the corresponding tagged section of DNA.
- The rate of copying can be changed greatly (e.g. *100) by an auxiliary protein which attaches itself to a particular section of DNA, either to attract or to block/repel the 'copying machine'. Lambda-phage in E. Coli is a famous case, illustrating the biological implementation of a flip-flop.

Control

- Two 'leucine zipper' molecules will form a 'clamp' stably attracted to DNA
- Provided that the 'bumps' at the clamp ends hold to the DNA sequences at the points of

attachment

• This sets up an attraction (or obstruction) locus for transcription start.

• In thresholded logical terms:

output_protein present := control_1_present & control_2_present, or output_protein present := not (control_1_present & control_2_present)

• This lets the set of genes present on the DNA function as a program whose execution state is defined by the presence/absence (level) of the corresponding proteins.

- 'Programs' have additive flavor of Markov-rule systems

A speculation: the cell as a molecular computer

- How might the cell function as a (universal) molecular computer?
- Use (e.g.) 12 proteins, present or absent, to define a master 'state': 4096 states.
- Sense the external and internal environment by activating/inactivating, then producing/eliminating signal proteins. (As many as appropriate)
- The state proteins catalyze their own continuance (as in lambda), except in presence of a periodically varying 'clock' protein, which acts with an auxiliary pair of control proteins to realize
 - state_n_present := if clock_present &aux_n1_ present then true
 - elseif clock_present &aux_n1_ absent then false else state_n_present end if
- The aux_nj _present/aux_n1_ absent protein values, and any auxiliary output_present values, can be defined by boolean expressions in the state_n_present and signal_j_present values. These boolean expressions can be realized using the '&' and 'not-&' operations described previously.

The cell as a molecular computer, II

- The machinery needed consists of:
 - Ribosomes for protein synthesis (53 proteins, 3 RNAs)
 - Auxiliary polymerases for DNA and RNA, problem sensing, DNA repair
 - Houskeeping: energy, synthesis of bases ('beads'), amimo acids (protein 'beads'): estimate 850 + 130
 - Detector molecules for external and internal conditions
 - Structural proteins for control and execution of the division cycle
 - Various small molecules, cell wall maintenance and coating
 - Control proteins (e.g. E. coli has about 700 known)
- E. Coli genome is 4,639,221 bp, 4.300 known genes; human has 2.5 Gb. 37,000 known/suspected genes. E. Coli detects at least 30 conditions, plus overheating. Yeast about 12Mb., about 6,000 genes.
- Our conjectured 4K-state cellular computer is probably complex enough to sustain multicellular life and cell specialization.(must react to presence of other cells)
- Cellular systems are inherently parallel at all levels from their Markovcondition programming on up.

Programmable systems can have bugs

- A bug in the program of a germ cell leads to failure of development or a genetic disease, of which there should be at least 37,000
- About 2 million mutations have accumulated (in humans)in the last 100,000 years: 4000 generations, so 500 per generation, 10 per division.
- Wandering retroviruses install themselves in the genome, and spread mutations. E.g. Rous sarcoma virus contains a mammalian growth gene.
- Bugs in the program of a single cell are not important, unless they cause uncontrolled growth (cancer) by
 - (1) injury to something in the DNA copying/repair/segregation pathway, raising the mutation rate, and producing progressive collapse;
 - (2) injury to some growth control factor, producing uncontrolled growth;
 - (3) injury to an adhesion-molecule gene (easier metastasis, producing injury to some important tissue);
 - (4) injury to some condition sensitivity gene, allowing cells to survive in environments in which they would normally sense trouble and die.

The genomes of tumor cells are damaged, often quite badly

- Numerous genes, even whole chromosome sections. may be deleted or duplicated
- Close inspection of tumor-cell genomes may provide useful hints for choice of therapy and prognosis.
 AFFYMETRIX
 - New tools are becoming available for such inspection
 - E.g. DNA microarrays
 - Can inspect DNA or RNA
 - Via reverse transcription to DNA
 - Photolithographic synthesis
 - up to 100,000 spots, oligos 70 long
 - Probes synthesized directly onto glass
 - treatment with each of (A,C,G,T) serially
 - Apply series of lithographic masks.
 - Array is hybridized to mix of DNA fragments
 - obtained from DNA to be analyzed (tagged red)
 - And comparison DNA (tagged green)
 - Piece complementary to each oligo will bind
 - at the corresponding array spot

The second se				

And Designation of the local division of the local division of the local division of the local division of the				
		Reverses.		

	and all the states			
	RETERSE			

The chemistry, magic bug juices, and procedures used

• Chemistry = synthesized, e.g. oligonucleotides

Synthesis Scale: 1micromol						
Modification	Base Charge	Setup Charge	Modification Charge**	desalt	орс	HPLC
None	\$2.50	\$0.00	\$0.00	\$5.00	\$5.00	\$80.00
Biotin	\$2.50	\$0.00	\$150.00	\$5.00	\$5.00	\$80.00
Inosine	\$2.50	\$0.00	\$45.00	\$5.00	\$5.00	\$80.00
Uridine	\$2.50	\$0.00	\$45.00	\$5.00	\$5.00	\$80.00
5'Phosphorylation	\$2.50	\$0.00	\$45.00	\$5.00	\$5.00	\$80.00
Phosphorothioate	\$2.50	\$0.00	\$0.00	\$5.00	\$5.00	\$80.00

So a micromole of TTAAGGCGA will cost you \$22.50

- Bug juices = cell extracts, e.g. reverse transcriptase, DNA Ligase
 - Proteins still can't be synthesized, but their DNA can be inserted into convenient hosts and harvested (bacteria, yeast, mouse, etc.)

Order This	Search Catalog	View Ice I	🔤 <u>Online Catalog</u>			CONTAN	IEW ENGLAND	
Aat II			are striction Endonucleases			[*] BioLabs [*]		
#R0117S #R0117L	500 units 2,500 units	\$50 (USA) \$200 (USA)	<u>Aat II</u> <u>Acc6 1</u> <u>Acc1</u> Aci1 Aci1	<u>Bmt </u> <u>Bpm </u> <u>BpuE </u> BsaA	<u>BstY </u> BstZ17 Bsu36 Btg_ Bts	<u>Kasl</u> K <u>pnl</u> Mbol Mboll Mfel	<u>Pvu I</u> <u>Pvu II</u> <u>Rsa I</u> <u>Rsr II</u> Sac I	
5′ G A C G T^C 3′ 3′ C^T G C A G 5′			Acu I Afe I Afi II Afi III Age I Ahd I	<u>BsaB I</u> BsaH I Bsa I BsaJ I BsaW I BsaX I	Cac8 Cla CviA Dde Dpn Dpn	<u>Mlu </u> <u>Mly </u> <u>Mni </u> <u>Msc </u> <u>Msc </u>	<u>Sac II</u> <u>Sal I</u> <u>Sap I</u> <u>Sau3A I</u> <u>Sau96 I</u> <u>Sbf I</u>	

- The polymerase chain reaction allows any section of DNA addressed by short sequences at its two ends to be amplified exponentially
 - Much the same technology allows fast DNA sequencing

A DNA Lesion Assay (Wigler, Lucito, et al, CSHL)

- Exploit fact that normal human genome sequence is now known
- Approx. 3% DNA subsampling by PCR to reduce random hybridization noise
 - Cut with '6-cutter' restriction enzyme averaging 1 cut per 4KB: about 500K cuts
 - Position of cuts known; known 5-base sequences at ends at cut allow PCR
 - Selective PCR amplification advantage of shorter pieces tends to concentrate product among those pieces of length < 1500Bp
 - These pieces are known in advance from genome sequence;
 - there are about 135,000 of these; select 85,000 with highly distinctive 70-bp long internal sequences
- Tag sequences with red or green phosphorescent marker at an end
- Prepare NimbleGene chip with 85,000 complementary sequences
- Comparative hybridization detects changes in DNA
 - normal/normal or normal/tumor comparisons

Features detected

• Aberrant behavior of single or adjacent probes

- could be point mutation adding an internal cut site or deleting one at end
- could be copy-number change affecting region spanning part of 70-base probe region (or pair of regions)
- Large-scale change of signal read from extensive genome section
 - Could be deletion of amplification of chromosome section
 - Possibly within developing clone

Signal detection issues

- Given a signal corrupted by noise:
 - use the assumed characteristics of the signal and the noise to separate these as cleanly as possible.
 - signal reconstruction is optimal when difference of reconstructed signal and observed data can be seen as pure noise carrying no signal.
- In the present case:
 - *signal* is arises from copy numbers jumping between discrete values at a limited number of places along the genome (hence basically a step function)
 - plus a number of 'small lesions', affecting just a few probes , perhaps just 1
 - *noise* is assumed to be additive Gaussian
- Reconstruction heuristic:
 - calculate average and standard deviation of the data over two 16-probe-wide sliding windows to the left and right of each point x;
 - Select l_value or r-value from smaller of
 - (lr_average measured_signal_at_x)/ lr_standard_deviation

Results

• Mollified signal versus original

• 'Residual noise'

and the second of the

• Quality of feature tracking

More drastic flattening needed for rapid scan

- Several hundred features detected per run
 - will be manually examined for possible follow-up

• Second heuristic: track forward thru mollified data, finding zones where max - min remains below threshold; take average in these zones

• 'narrow' features remain in 'residual noise' and can be detected there

Performance assessment

- When there is an underlying ground truth, given by a numerical function gt(i) of a real or integer parameter i:
 - In case at hand gt(i) is the 'true' copy number of the bases in the range covered by probe i
 - Measurement model is: meas(i) = F(gt(i), noise(i))
 - for lack of knowledge we take F = sum and noise = gaussian
 - **Reconstruction algorithm should minimize cost value** C(*gt*,*reconstructed_truth*)
 - In the case at hand C = cost is number of missed features
 - Stability test: assume one interpretation is ground truth; assess sensitivity to noise, regenerated artificially to match noise statistics of measurement
- Results: 5 sample test runs:
 - small feature error rates:
 - 0.27-; 0.46+
 - 0.22-; 0.25+
 - 0.29-; 0.19+
 - 0.26-; 0.42+ wide feature error rates:
 - 0.33-; 0.19+

0.09-; 0.29+ 0.19-; 0.08+ 0.16-; 0.14+ 0.19-; 0.11+ 0.24-; 0.05+;