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A B S T R A C T

The diversity of breast cancers reflects variations in underlying biology and affects the clin-

ical implications for patients. Gene expression studies have identified five major subtypese

Luminal A, Luminal B, basal-like, ErbB2þ and Normal-Like. We set out to determine the

role of DNA methylation in subtypes by performing genome-wide scans of CpG methyla-

tion in breast cancer samples with known expression-based subtypes. Unsupervised hier-

archical clustering using a set of most varying loci clustered the tumors into a Luminal A

majority (82%) cluster, Basal-like/ErbB2þ majority (86%) cluster and a non-specific cluster

with samples that were also inconclusive in their expression-based subtype correlations.

Contributing methylation loci were both gene associated loci (30%) and non-gene associ-

ated (70%), suggesting subtype dependant genome-wide alterations in the methylation

landscape. The methylation patterns of significant differentially methylated genes in lumi-

nal A tumors are similar to those identified in CD24 þ luminal epithelial cells and the pat-

terns in basal-like tumors similar to CD44 þ breast progenitor cells. CpG islands in the

HOXA cluster and other homeobox (IRX2, DLX2, NKX2-2) genes were significantly more

methylated in Luminal A tumors. A significant number of genes (2853, p < 0.05) exhibited

expressionemethylation correlation, implying possible functional effects of methylation
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on gene expression. Furthermore, analysis of these tumors by using follow-up survival data

identified differential methylation of islands proximal to genes involved in Cell Cycle and

Proliferation (Ki-67, UBE2C, KIF2C, HDAC4), angiogenesis (VEGF, BTG1, KLF5), cell fate com-

mitment (SPRY1, OLIG2, LHX2 and LHX5) as having prognostic value independent of sub-

types and other clinical factors.

ª 2010 Federation of European Biochemical Societies.

Published by Elsevier B.V. All rights reserved.
1. Introduction Several recent studies have reported on the epigenetic in-
Breast cancer is the most frequently diagnosed cancer in

women in the United States accounting for 26% of newly diag-

nosed cases in 2008. It is themajor cause of death among adult

women, and lifetime risk of dying from breast cancer is 33 per

thousand among women from high income countries.

Women in high income countries have a higher risk than

women from middle or low income countries, reflecting dif-

ferent exposure to known risk factors such as hormonal expo-

sure and weight, age at menarche, number of pregnancies

brought to term, and extent of breast feeding. Only about

10% of breast cancer cases are attributed to known hereditary

factors, such as mutations in BRCA1 and BRCA2. Breast carci-

nomas are classified using clinical (tumor size, lymph node

status) and histo-pathological (grade, hormone receptor sta-

tus) metrics to evaluate likely aggressiveness and identify op-

timal courses of treatment. The classical prognostic factors

that are typically used in the clinic are node status, tumor

size and tumor grade. Estrogen receptor status and ErbB2 sta-

tus are therapy response predictors but do not have significant

prognostic value independent of therapy.

For some time, themajor characteristic differentiating breast

carcinomas for treatment purposes has been estrogen receptor

(ER) status. More recently, sophisticated molecular analyses

includingmeasurements of gene expression and genomic aber-

rations have refined breast cancer classfication. Most classifica-

tionsmirror the separation seenby ER status butwith additional

information identifying smaller groups with homogenous mo-

lecular alterations and/or clinical behavior. Themost widely ac-

cepted molecular classification of breast carcinomas is the

“IntrinsicClassification”basedongeneexpressionfirstproposed

by Perou and Sorlie in 2000 (Perou et al., 2000; Sorlie et al., 2003).

They identified fivemajor subtypes of breast tumors: Luminal A

and Luminal B (dominated by ER positive samples and with ex-

pression of genes typical of glandular epithelium); Basal-like

(ER negative samples with expression of myoepithelial associ-

ated genes); ErbB2þ (heterogeneous ER status, but often ampli-

fied for ErbB2þ and nearby genes, and a strong resemblance to

Basal-likeexpression); andNormal-like (tumorswithexpression

patternsclose tonormalbreast tissue).Of thefivesubclasses, the

Luminal A and Basal-like subtype are the most clearly defined.

Several studies have shown that they represent tumorswith dif-

ferent aberrations at the genomic level aswell, and these groups

correspond reasonably well to clinical characterization on the

basis of ER and HER2 status, as well as proliferation markers or

histological grade (Bergamaschi et al., 2006). The intrinsic sub-

types have also been associatedwith different prognostic impli-

cationswith theLuminalAsubtypehavingbetterprognosis than

the Basal-like and ErbB2þ subtypes.
fluences in breast cancer (Hinshelwood and Clark, 2008).

These include several classically studied breast cancer genes

such as ESR1, CDH1 and CDKN2A (Birgisdottir et al., 2006;

Caldeira et al., 2006). Flanagan et al., (Flanagan, Cocciardi

et al.) used Affymetrix promoter arrays and methyl DNA im-

mune-precipitation to study 33 familial breast cancers. They

found DNA methylation patterns are significantly associated

with BRCA mutation status, although they could not deter-

mine association with subtypes in their small sample set.

We set out to determine if the gene expression-based sub-

types have underlying epigenetic differences. Epigeneticmod-

ifications both at the chromatin and DNA level affect the

structure and the expression of genes encoded in the DNA.

The most widely studied epigenetic modification is the cyto-

sine methylation in the context of the dinucleotide CpG. In

embryonic stem cells such modifications is of major impor-

tance in regulating genes important for cell differentiation

and function. Altered regulation of CpG methylation is also

implicated in many diseases. Specifically, in cancer, methyla-

tion of CpG islands proximal to tumor suppressors such as

p16, RASSF1A, and BRCA1, is a frequent event (Merlo et al.,

1995; Rice et al., 1998; Dammann et al., 2000). Several high

throughput microarray based methods have been described

that employ methylation-sensitive restriction enzymes for

detection of methylation (Huang et al., 1999; Khulan et al.,

2006; Ordway et al., 2006; Irizarry et al., 2008). We recently

reported one such method, called Methylation Oligonucleo-

tide Microarray Analysis (MOMA) (Kamalakaran et al., 2009).

MOMA allows for high throughput analysis of thousands of

genomic loci includingmost CpG islands, and requires as little

as 100 ng of sample DNA. The large number loci that can be in-

terrogated using MOMA allows an unbiased investigation of

genome-wide methylation patterns as well as an in-depth

search for loci whose methylation have clinical importance

in breast cancer.

The Oslo Micrometastases Study (OMS) (Wiedswang et al.,

2003) has been the subject of one of the largest concentration

of parallel molecular analysis techniques on a clinical data-

set. The full study comprises over 900 breast cancer cases

with information about presence of disseminated tumor cells

(DTC), and associated clinical information such as node sta-

tus, tumor size, estrogen receptor status, grade as well as

a median of 85 months in follow-up. A subset of approxi-

mately 140 patients is represented with fresh frozen samples

from the primary tumor, matched blood, and micrometasta-

ses and has been used in parallel pilot studies of immunohis-

tochemisty (Bergamaschi et al., 2006), whole genome mRNA

expression (Naume et al., 2007), arrayCGH, whole genome

SNP and SNP-CGH, whole genome miRNA expression

http://dx.doi.org/10.1016/j.molonc.2010.11.002
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http://dx.doi.org/10.1016/j.molonc.2010.11.002


Table 1 e Clinical Characteristics of tumors profiled in this study.

Sample Category Sample Number

Samples

1. Tumors 108

2. Normal 11

Expression Subtype

1. Luminal A 40

2. Luminal B 13

3. ErbB2-Like 19

4. Basal 12

5. Normal-Like 14

6. Not Available 10

TOTAL 108

Hormone Receptor Status

1. Positive 66

2. Negative 35

3. Not Available 7

TOTAL 108

Tumor Grade

1. Grade I 14

2. Grade II 52

3. Grade III 40

4. Not Available 2
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analyses and high throughput sequencing. In this paper we

report the results of one of two independent DNA methyla-

tion studies performed on this information-rich set employ-

ing the genome-wide MOMA method. The MOMA method

provides a global view of methylation state of the genome,

covers most of the CpG islands and provides resolution at

a sub-CpG island level dependant on restriction fragment

generated by representation. However, some classically stud-

ied CpG islands associated with cancer-related genes such as

p16 and RASSF1A are missed by MOMA because of excessive

fragmentation by the representational enzyme. To address

this issue, a complementary and parallel study was carried

out using Illumina Golden Gate array methodology and the

results are reported in the concurrently submitted paper by

Rønneberg et al The Illumina method addresses a much

smaller but focused portion of the genome (807 cancer-re-

lated genes), but provides single nucleotide resolution for

1505 CpG sites in these genes. Together, these two studies

provide a detailed survey of epigenetics in breast cancer,

their relationship to the molecular subtypes and other clini-

cal factors such as hormone status and TP53 mutational sta-

tus and their implications for relapse risk.

TOTAL 108

Tumor Size (Category)*

1. pT1 46

2. pT2 49

3. pT3 6

4. pT4 4

5. Not Available 3

TOTAL 108

Lymph Node Status *

1. pN0 43

2. pN1 31

3. pN2 18

4. pN3 8

5. Not Available 8

6. TOTAL 108
2. Results

We performed MOMA (Methylation Oligonucleotide Microar-

ray Analysis) on 119 breast samples (108 frozen breast tumors

plus 11 normal adjacent samples collected during surgery).

The primary tumors from the Oslo Micrometastases Study

(OMS) (Wiedswang et al., 2003) were from stage I to stage III pa-

tients, and came with a variety of clinical, pathological and

molecular data and have been described previously. A sum-

mary of the clinical information on the samples is provided

in Table 1. MOMA has been described and validated using

cell lines, breast and ovarian tumor tissues previously

(Kamalakaran et al., 2009). Briefly, the sample DNA is digested

withMspI tomake a representation, ligatedwith adapters and

split into two pools. One pool is restricted with the methyla-

tion-specific restriction enzyme McrBC, while the other pool

is amock treated control. The twopools are thenamplified, flu-

orescently labelled andhybridizedontoamicroarray. The ratio

of intensity of the mock-treated sample over McrBC-treated

sample provides an estimate of methylation. Themethylation

states of each fragment are determined by using an expecta-

tion maximization algorithm to assign probability of each

fragment belonging into each of three distinct states e unme-

thylated (�1 state), partially methylated (0 state), and methyl-

ated (þ1 state). A fragment is determined to be differentially

methylated if it switches states from one state to another

across samples (�1 to 0 or 0 to þ1 or �1 to þ1).

We first identified loci whose methylation state differed in

breast tumors when compared to normal tissue to determine

baseline differences. We used the t-statistic to identify consis-

tently altered loci between tumors and normal tissue. A list of

the top 100 gene associated fragments that are significantly

differentially methylated between tumors and normal tissue

is provided in Supplemental Table 1 and was employed in

the hierarchical clustering described in the following section.

Some of our results confirmed previous findings for specific
genes, such as the CpG island proximal to RUNX3

( p-value ¼ 8.4 e�7) and PITX2 ( p-value ¼ 2.4 e�29) which

have been shown to be inactivated in breast cancer (Maier

et al., 2007; Harbeck et al., 2008; Subramaniam et al., 2009).

We also identified several strong novel candidate biomarkers

for breast cancer. Additionally, we found evidence that meth-

ylation of CpG islands upstream of certain microRNAs is cor-

related with tumorigenesis in this sample set. The CpG

islands within 5 kb of miRNAs miR196a1 ( p-value ¼ 0.00058),

miR335 ( p-value ¼ 2.2e-14), miR124a3 ( p-value ¼ 1.4e-9) and

miR423 ( p-value ¼ 4.19e-13) all show increased methylation

in tumors when compared to normal tissue. Expression of

one of these, miR335, has been previously shown to be lost

in a majority of primary breast tumors and this loss of expres-

sion leads to an increased likelihood of metastasis (Tavazoie

et al., 2008). The methylation status of three such candidates

(GPR10, DRD5, CDKN1C) in a set of normal tissues and breast

tumors is plotted in Figure 1a. These three candidates were

then evaluated for significant methylation in tumor tissue us-

ing an independent sample set using bisulfite sequencing. All

three candidates showed significantly increased methylation

in tumor tissue while maintaining minimal methylation in

matched normal tissues (Figure 1b).

http://dx.doi.org/10.1016/j.molonc.2010.11.002
http://dx.doi.org/10.1016/j.molonc.2010.11.002
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Figure 1 e (a) Differentially methylated loci between tumors and normal tissue of 3 loci proximal to genes GPR10, DRD5 and CDKN1C. The

samples are grouped by expression subtype (b) Bisulfite sequencing of selected loci in independent sample set validates significant methylation in

tumors compared to normal tissue.
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We next investigated DNA methylation in the clinical con-

text of breast cancer subtypes, histology and prognosis. The

108 tumors with known expression-based subtypes were di-

vided into a discovery set (83 samples) for clustering analysis

and a validation set (25 samples). We determined the features

to be used for clustering in two steps consisting of non-over-

lapping sets. The top 500 loci that varied most by standard de-

viation across 83 tumor sampleswere chosen tomaximize the

methylation diversity in the set (Supplemental Table 2). Con-

versely, the 100 loci described above (Supplemental Table 1)

that distinguished tumors fromnormal tissue contain little in-

formation concerning subtype diversity, but serve as unifying

characteristics that are common to all breast cancers.

We used these 600 features to cluster the 83 tumors and 11

normal samples for which the expression subtype data was

available. Hierarchical clustering of the samples based on

these six hundred loci gave us clustering that is remarkably

similar to the one produced by expression analysis.

Figure 2a shows the clustering of samples based on methyla-

tion and overlays the known expression cluster of each sam-

ple. As expected, the normal breast tissue samples clustered
tightly. The expression subtype was determined by identify-

ing which of the five centroids each sample correlates most

to as described by Sorlie et al. (Sorlie et al., 2003). Cluster I

was dominated by samples with a high correlation to the Lu-

minal A centroid and anti-correlation to the Basal-like cen-

troid. This is in contrast to cluster II where the samples were

highly correlated to the Basal-like centroid and anti-correlated

to the Luminal A centroid. Samples in cluster III were domi-

nated by low correlation to each of the centroids. Most of

the Luminal A samples were in cluster I (22/30 samples) and

the Basal-like samples were in cluster II (7/8 samples), cluster

III had a mixture of subtypes, but 5 of 10 Normal-like samples

were in this low correlation class. We computed the absolute

of the difference between the correlation values to the Lumi-

nal A centroid and the Basal-like centroid as ameasure of con-

fidence in assignment of the expression subtypes. This

confidence measure is significantly greater in the samples

which cluster together in the methylation-based clustering

(Methylation clusters I and II) than in samples in the third

methylation cluster using a ManneWhitney test ( p-val-

ue ¼ 0.0013). Finally, changing the number of loci used from

http://dx.doi.org/10.1016/j.molonc.2010.11.002
http://dx.doi.org/10.1016/j.molonc.2010.11.002
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top 500most variant to top 250 or top 1000 did not significantly

alter the clustering and retained the separation of the luminal

A samples from basal-like/ErB2þ samples (data not shown).

We then investigated the possibility of improving the clus-

tering based on expression subtypes using a selected subset

of loci. We used a semi-supervised version of our evolutionary

search tool, a Genetic Algorithm (GA) based feature selection

method (Schaffer et al., 2005). In this approach, we used the

GA to select and evaluate subsets of loci for uniformity of the

cluster members’ expression subtype. This subset selection

resulted in many smaller subsets outperforming the original

600-loci set as a stratification tool. We show in Figure 2b one

such subset which included just 45 of the original 600 loci.

This subset substantially improves clustering of the subtypes,

most notably the basal samples. Finallywe added 25 new sam-

ples as validation into the clustering algorithm and we were

able to cluster 9/9 Luminal A samples in the Luminal cluster,

9/10 Basal-like/ErbB2þ in the Basal-like/ErbB2þ cluster and 5/

5 Normal-like samples in the Normal-like cluster (Figure 2c).

Interestingly, these chosen loci were not related to the

genes that were identified in the expression subset as intrinsic

gene set. Of the 500most varying loci, 146 loci were found to be

within 5000 bp of the transcriptional start site of a known

gene. Many of these genes have been implicated in breast can-

cer, notably the homeobox gene clusters (HOXA2, HOXB13,

DLX3), cell surface receptors (EGFR, the WNT family receptor,

FZD8, toll-like receptor, TLR2), keratins (KRT7) and forkhead

proteins (FOXF1). Supplemental Figure 1 shows a subset of

these genes and their functional categories.

The remainder were not near any annotated gene tran-

scriptional start site. We looked at the evolutionary conserva-

tion and regulatory potential for these loci to evaluate the

possibility that these could have any unannotated regulatory

functions. Using data from themulti-species conservation de-

rived regulatory potential of the genome (Taylor et al., 2006),

we compared the loci that possess discriminatory power to

cluster breast cancer subtypes over a randomly chosen subset.

These islands that contribute to clustering turned out to be not

significantly more conserved than the rest of the genome

(Supplemental Figure 2). The absence of any clear increased

conservation or regulatory regions in loci that have subtype-

specific methylation is perhaps surprising. The CpG islands

which vary the most among tumors are clearly able to differ-

entiate between Luminal and Basal-like tumors. This observa-

tion leads us to the possibility that the etiology of the different

tumor subtypes maybe reflected in the genome-wide methyl-

ation patterns. When we investigated the possibility that the

luminal and basal subtypes have different global methylation

levels, we determined that the overall methylation state in

each samplewas comparable.We find no evidence of a “meth-

ylator phenotype” in breast cancer as has been seen in colo-

rectal cancer (Toyota et al., 1999a; Toyota et al., 1999b). The

overall levels of methylation (as determined by the number

of loci in each of the “�1”,“0” and “þ1” states) in luminal

and basal tumors remain the same, but distinct patterns of

methylation separate the two types.

We then specifically looked for genes that are differentially

methylated in the various subtypes. In this analysis we used

a t-test to identify fragments thatweremost different between

Luminal A expression subtype and the Basal-like or ErbB2þ
expression subtypes. We identified over 637 loci that were sig-

nificant ( p-value<0.01 after correcting for multiple-testing),

including 360 loci that weremappable to a gene using our pre-

viously defined criteria (Supplemental Table 3). Interestingly,

56% of the significant loci were found to be near genes, com-

pared to only 30% in themost varying loci used in the unsuper-

vised clustering analysis. A histogram analysis of the distance

of these fragments to the transcriptional start site of their asso-

ciated genes showed that most of the significant fragments

were within conventionally defined promoter regions with

more than 50% of our significant genes within 500b of the

TSS. (Supplemental Figure 3). The table includes many gene

families implicated in cancer anddifferentiationeHOXA fam-

ily (HOXA2, HOXA6, HOXA7, HOXA10, HOXA11, HOXC10,

HOXC5, HOXD13), FOX family (FOXC1, FOXD4, FOXD4L1,

FOXD4L3, FOXF2, FOXP4, FOXQ1), growth factors and growth

factor receptors (EGFR, FGF9, FGF19), matrix proteins

(COL14A1, COL16A1, COL7A1, CLDN10, CLDN5) and protocad-

herins (PCDH10, PCDHAC2, PCDHGA10, PCDHGA11). The HOX

geneshavebeenpreviouslydescribed tohaveaberrantmethyl-

ation in a variety of cancers, with the HOXA cluster aberrantly

methylated inbreast cancer (Novaketal., 2006). Indeed,wefind

many HOX genes to be significantly altered in their methyla-

tion status. Importantly when we looked at the subtypes of

cancer, the HOXA gene alterations were more common in tu-

mors belonging to the Luminal A expression subtype than the

others. Increased methylation of HOXA2, HOXA7, HOXA10

and HOXA11 was observed in a majority of Luminal tumors,

while their levels stayed similar to normal breast tissue in the

other subtypes (Figure 3a). A heatmap of the averagemethyla-

tion levels of a few interesting candidates fromthe list of differ-

entialmethylated geneswith subtype-specificmethylation are

shown in Figure 3b. Interestingly, a majority of the significant

loci have higher levels of methylation in luminal samples

when compared to the basal-like/ErbB2-plus samples.

2.1. DNA methylation loci as prognostic factors

One of the critical factors in managing treatment for breast

cancer is identifying those at most risk for metastatic disease.

We used distant disease free survival (DDFS) as the clinical

end point to measure tumor aggressiveness. The classical

clinical prognostic factors such as node status and tumor

size significantly stratified patients into good and poor prog-

nosis groups, while receptor status and adjuvant therapy sta-

tus did not possess significant prognostic value. The

distributions and prognostic value of the clinical variables

are summarized in Supplemental Table 4. We then used this

clinical data to identify genomic loci whose methylation sta-

tus correlated with tumor aggressiveness. Loci were first fil-

tered by choosing only those that were likely to be

informative by requiring that the minority methylation state

of a given locus contains at least 15 samples. This resulted

in a total of 34,371 loci, of which 11,459 loci were found to be

within 5000 bp from a transcriptional start site and 22,912

loci were not near any transcriptional start site.

We evaluated each of the above loci for their ability to

stratify patients into good or poor prognosis groups depending

on their methylation status. Using the KaplaneMeier estima-

tor of survival as the underlying statistical model, we

http://dx.doi.org/10.1016/j.molonc.2010.11.002
http://dx.doi.org/10.1016/j.molonc.2010.11.002
http://dx.doi.org/10.1016/j.molonc.2010.11.002
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Figure 2 e (Continued)
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identified the association of methylation states with DDFS.

The KaplaneMeier estimator calculates the probability of no

systemic recurrence at a given time by using the time to sys-

temic recurrence from retrospective data. Survival curves

were estimated for each state of a given locus and the log-

rank (Mantel-Haenzel) test was used to determine whether

the two survival curves were significantly different from

each other. We estimated statistical significance based on

1000 permutations of the time to distant metastasis data

and chose loci that achieved a significance level less than

0.05 after multiple-testing correction. This led to a total of

2559 loci chosen as significantly stratifying the patients into

good and poor prognosis groups.

To find which of the above loci are providing prognostic in-

formation independent of other clinico-pathological
Figure 2 e (a) Unsupervised clustering of breast tumors using methylation

analysis. Luminal A (Blue) subtypes (Cluster 1) form a distinctly separate gro

TP53 mutational status and Her status by FISH are plotted under the den

Correlations to Luminal, Basal and ErbB2D Centroid derived from expres

unambiguous assignment of expression subtype, while cluster III contains

(b) fragment subset clusters luminal and basal groups. (c) Addition of 25 v

subtypes from basal/ErbB2 enriched subtypes.
variables, we performed multivariate Cox regression analysis

using other significant clinical variables. Of the 2559 signifi-

cant loci, a total of 921 loci remained significant when in-

cluded in a multivariate Cox regression with the other

clinical variables. Of these 921 loci, 490 were found to be

within 5,000bp from a transcriptional start site while 431

were deemed intergenic. It is notable that the ratio of genic

to intergenic loci amongst the prognostic factors is signifi-

cantly different compared to the ratio of the complete list of

34,371 loci included initially for survival analysis

( p-value < 10�3). Gene ontology enrichment analysis of the

490 genic loci revealed significant ( p-value<0.01 after multi-

ple-testing correction) enrichment of genes related to tran-

scription factor activity, regulation of MAP kinase activity,

cell proliferation, cell death, angiogenesis and neuronal
data groups samples similarly to those obtained by expression based

up from the basal-like(red) and ErbB2D(purple) subtypes. ER status,

drogram (Black [ positive, Gray [ Negative, white [ NA).

sion data are plotted under the heatmap. Clusters I and II have

samples with samples having weak correlations to multiple centroids.

alidation samples to the clustering retains the separation of luminal

http://dx.doi.org/10.1016/j.molonc.2010.11.002
http://dx.doi.org/10.1016/j.molonc.2010.11.002
http://dx.doi.org/10.1016/j.molonc.2010.11.002


Figure 3 e (a) Deregulation of methylation at HOX A genes in Luminal cancer subtypes (b) Heatmap of average methylation values of 100 selected

genes groups by subtype. Transcription factors belonging to Homeobox family (HOXA, IRX, LHX1), forkhead family (FOXC1, FOXD4,

FOXP2), cell adhesion molecules (KRT7, COL7A1, COL14A1, COL16A1) and protocadherins (PCDHAC2, PCDHGA10) have increased

methylation levels in luminal tumors when compared to basal and ErbB2 subtypes.
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Figure 4 e Loci whose methylation status predicts likelihood of relapse.
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development (Beissbarth and Speed, 2004). This suggests that

loci associated with poor prognosis are more likely to be func-

tionally important in themetastasis cascade, thus opening up

the possibility of identifying potential biomarkers for progno-

sis as well as targets for treatment.

KaplaneMeierSurvival curvesareplottedforasetof interest-

ing candidates in Figure 4. These genes are involved in cancer-

related molecular functions such as cell death (TOP1 p-value ¼
5e-04; SEPT4 p-value ¼ 6e-03), cell cycle (UBE2C p-value ¼ 9e-

04; MAPK12 p-value ¼ 1e-03; TUBB3 p-value ¼ 3e-02), cell fate

commitment (KLF4 p-value ¼ 9e-03; FGF12 p-value ¼ 4e-03)

and transcription factor activity (ELK1, p-value ¼ 5e-03). The

list of prognostic genes organized according to their significant

geneontologytermsarepresentedinTable2.Notably, themeth-

ylation stateof a gene amongst thesampleswithpoorprognosis

is different from its state in normal breast tissue samples. The

complete list of genes and intergenic loci whose methylation

status correlated significantly with relapse likelihood is given

in Supplemental Table 5.

We find demethylation of the Topoisomerase I (TOP I) pro-

moter increasedthe likelihoodofrelapse inthosepatients.Other

candidategenes includeGoosecoid (GSC,p-value¼3e-04),which

has been previously shown to promote metastasis through its

role in epithelial-mesenchymal-transitions (Hartwell et al.,

2006) and whose demethylation is found to be associated with
poorprognosis inourstudy;demethylationofVascularendothe-

lial growth factor, VEGF ( p-value ¼ 8e-03), whose role in angio-

genesis is well known is also associated with poor prognosis;

and ONECUT1 ( p-value ¼ 8e-03), whose methylation has been

previously associated with cervical cancer and is associated

with poor prognosis in our study.We found that thedemethyla-

tion of TP53BP2 ( p-value ¼ 1e-03), a protein that binds to TP53

leadstosignificantlypoorerprognosis independentof treatment

andother clinical variables. Due to its reported role in regulating

the apoptotic function of TP53 (Sullivan and Lu, 2007), we inves-

tigated the relationshipofTP53BP2methylation and relapse risk

in TP53 wild type and TP53 mutated populations. Interestingly

the prognostic value of TP53BP2 methylation status was com-

pletely eliminated inTP53mutatedpopulations, revealing anef-

fect modifying link between TP53 mutation and TP53BP2

methylation based prognosis (Figure 5).

2.2. Effects of methylation on Gene expression

The OMS study samples have been profiled using cDNA arrays

tomeasure RNA levels in each sample relative to a pooled RNA

reference and expression data are publicly available. The ab-

sence of absolute expression levels precluded a sample by

sample correlation to the absolute methylation levels identi-

fied in this study. However, it is possible to pool the samples

http://dx.doi.org/10.1016/j.molonc.2010.11.002
http://dx.doi.org/10.1016/j.molonc.2010.11.002
http://dx.doi.org/10.1016/j.molonc.2010.11.002


Table 2 e Hazard ratios of selected fragments along with their GO category.

Significant
Gene Ontology
Term ( p-value)

Gene
Name

Methylation
State in

Normal Tissue

Poor Prognosis
Methylation

State

Significance of
Survival Difference

( p-value)

Significance of
Multivariate

Cox Coefficient
( p-value)

Multivariate Hazard
Ratio (lower 0.95,

upper 0.95)

Cell Death

(1e-03)

TOP1 M UM 2e-05 5e-04 3.677 (1.75, 7.72)

TDGF1 UM M 6e-05 9e-04 4.08 (1.77, 9.38)

CIDEB UM M 5e-05 2e-03 4.02 (1.63, 9.89)

UNC5A UM M 4e-03 0.027 2.74 (1.12, 6.7)

Cell Fate

Commitment

(6e-04)

SPRY1 M UM 1e-04 2e-03 4.0 (1.65, 9.73)

FGF12 UM M 1e-04 4e-03 3.31 (1.47, 7.49)

KLF4 M UM 1e-03 9e-03 2.63 (1.27, 5.46)

OLIG2 UM M 5e-03 0.023 2.56 (1.14, 5.76)

Cell Proliferation

(6e-08)

KI-67 M UM 5e-03 0.004 3.43 (1.48, 7.93)

HDAC4 M UM 1e-03 0.016 2.62 (1.19, 5.75)

Cell Cycle Process

(7e-04)

KIF2C M UM 2e-03 8e-03 2.65 (1.28,5.49)

UBE2C M UM 1e-05 9e-04 3.57 (1.68, 7.59)

MAPK12 M UM 9e-04 1e-03 3.51 (1.60, 7.67)

TUBB3 M M 9e-03 0.035 3.19 (1.09, 9.39)

Vasculature

Development

(8e-04)

VEGF M UM 8e-03 7e-03 3.01 (1.34, 6.75)

KLF5 M UM 4e-03 4e-03 3.56 (1.49, 8.53)

BTG1 M UM 2e-03 0.013 2.65 (1.22, 5.74)

Transcription

Factor Activity

(1e-04)

LHX5 UM M 6e-03 0.032 2.94 (1.10, 7.87)

LHX2 M UM 4e-03 0.028 2.32 (1.09, 4.91)

ONECUT2 M UM 8e-03 0.029 2.74 (1.11, 6.79)

ONECUT1 UM M 8e-03 0.023 2.8 (1.15, 6.83)

FOXH1 UM M 8e-05 7e-05 5.09 (2.28, 11.36)

ELK1 UM M 1e-03 5e-03 3.53 (1.46, 8.53)

JUN M UM 4e-03 0.025 2.44 (1.12, 5.33)

GSC M UM 3e-04 2e-03 3.69 (1.61, 8.45)
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according to their methylation states and identify the differ-

ence in relative expression levels between these groups. For

each locus, we grouped samples according to their methyla-

tion state (�1,0,þ1). We then tested if there is a difference be-

tween expression levels of a given gene between 2

methylation states using the one-sided Wilcoxon signed

rank test. We used a definition of a fragment being within

5 kbp upstream to 2 kbp downstream of a transcriptional start

site to identify that fragment as being associated with the

gene. 9487 unique genes from the expression data set had at

least one fragmentmapped to this region.We analyzed the ef-

fects of methylation of these loci on expression levels of asso-

ciated genes. Of these, 8393 genes had at least 10 samples

exhibiting at least 2 methylation states thereby enabling us

to compare relative expression level differences with methyl-

ation state. 2853 (33%) genes showed a significant anti-correla-

tion of the expression levels to the methylation state of the

corresponding fragment ( p-value<0.05). 146 of the 500 frag-

ments used in the unsupervised clustering were gene associ-

ated by criteria described above. Of these 146, 79 were

present in the expression data. 33 of those 79 genes showed

significant anti-correlation of gene expression with methyla-

tion. Additionally, 313 genes that were significant in the sur-

vival analyses had expression data and 137 of those were

found to have significant anti-correlation between gene ex-

pression andmethylation status. Of the 362 genes with signif-

icant differential methylation between basal-like/ErbB2þ and

luminal subtypes, 200 could be analyzed for correlation to ex-

pression. 118 of these genes showed significant anti-correla-

tion of gene expression levels to methylation states.The
mean expression values of the samples in each methylation

state are plotted for 50 genes in a heatmap in Figure 6.
3. Discussion

In this study, we performed genome-wide scans of CpG island

methylation patterns in over 100 breast tumors and normal

breast tissues. The primary finding of our analysis is that lu-

minal breast tumors have different methylation profiles

when compared to other breast tumor subtypes. The pattern

of methylation in Luminal tumors is distinctly different from

tumors of basal-like or ErbB2þ origin. We find that this differ-

ence is reflected throughout the CpG islands in the genome

and is not limited to functional genes. We compared our re-

sults with those of the parallel study of Rønneberg et al using

the Illumina Golden Gate array and reported concurrently

along with this study. Our own clustering results produced

three clusters (Figure 2c). Cluster I consists of mostly Luminal

A subtypes, Cluster II has ErbB2þ and basal subtypes and clus-

ter III has normal samples together with Normal-Like and

some Luminal subtypes. We determined that 72 samples

were analyzed in both studies. The Rønneberg et al study

also identified three methylation based clusters. Two of these

clusters consisted of a majority of Luminal A expression sub-

types (Clusters I and III) and one with Basal-like and ErbB2þ
subtypes (Cluster II). There were significant additional differ-

ences in ER and TP53 mutational status between Cluster

I and II but not with the Cluster III. When we looked at the

overlaps between our Luminal A cluster (Cluster I) with those

http://dx.doi.org/10.1016/j.molonc.2010.11.002
http://dx.doi.org/10.1016/j.molonc.2010.11.002
http://dx.doi.org/10.1016/j.molonc.2010.11.002
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Figure 5 e (a) Methylation status of TP53BP2 is associated relapse risk, (b) risk associated with TP53 mutation status (c) BP2 methylation status is

informative of relapse risk only in patients with wild type TP53 but not (d) TP53.
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of Rønneberg et al., 32/34 samples were identified in the Lumi-

nalmajority clusters (Clusters I and III in Rønneberg et al.). Ad-

ditionally, 23/28 samples in Cluster II in our study were also

identified as belonging to cluster II in the Rønneberg study.

These overlaps provide strong evidence of the distinctmethyl-

ation differences between Luminal A subtype and the basal/

ErbB2þ subtypes. Our results predict that there are fundamen-

tal changes occurring in luminal tumors that are then

reflected in the genome-wide methylation patterns. Interest-

ingly, luminal origin tumors had significantly more methyla-

tion in fragments associated with transcription factors

implicated in development and differentiation e notably the

HOX A and homeobox genes and forkhead family.

These findings complement recent reports on DNAmethyl-

ation patterns seen in different cell types in breast tissue

(Bloushtain-Qimron et al., 2008). Bloushtain-Qimron et al. iden-

tifiedmethylation patterns fromFACS sorted cells fromnormal

breast tissue; CD24þ (Luminal), MUC1þ (Luminal progenitor),

CD10þ (myoepithelial progenitor) andCD44þ (multipotent pro-

genitor). They determined that CD24 þ luminal cells have in-

creased methylation at a number of development related

transcription factors when compared to CD44 þ basal progeni-

tor cells. Our owndata show significant overlaps of themethyl-

ation patterns in luminal subtypes with those found in
CD24 þ breast cells and patterns in basal subtype overlap with

multipotent CD44þ progenitor cells. A comparison of differen-

tially methylated genes between the Bloushtain-Qimron study

and our own results showed remarkable agreement e 10 of

thetopgenes identified in their studyareconsistentwithour re-

sults. Table 3 shows overlaps between our study and those of

Bloushtain-Qimron et al. These findings suggest that the ge-

nome-wide methylation pattern of the tumors reflects the

methylation pattern of the cell of origin. Supporting this hy-

pothesis is the finding that FOXC1 and HOXA10, two of the

four markers identified by Bloushtain-Qimron et al. are among

the top most differentially methylated markers in our study.

During the preparation of this manuscript, two new studies,

(Flanagan et al; Holm et al.) reported their findings on DNA

methylation patterns in breast cancer. The study by Holm et.

al. showed significant differences in the DNAmethylation pat-

terns of luminal A, luminal B and basal tumors using the Illu-

mina Beadstudio Methylation Module. These results

complement our ownfindings, although their platformcovered

only 807 cancer-related genes compared to the genome-wide

CpG islands platform used in our study. Due to this limitation,

they did not identify the novel findings in our own study that

DNA methylation patterns in the breast cancer subtypes are

not limited only to cancer-related genes but reflected

http://dx.doi.org/10.1016/j.molonc.2010.11.002
http://dx.doi.org/10.1016/j.molonc.2010.11.002
http://dx.doi.org/10.1016/j.molonc.2010.11.002
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Figure 6 e Correlation of expression levels to methylation states of the associated fragments. Heatmap of the mean of the expression values for

a selected list of 50 genes with significant anti-correlation to methylation states is plotted. White colors indicate no samples were present in that

methylation state for the gene. The number of individual samples in each state varies by gene and thus is not plotted.
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genomewide in both gene associated and non-gene associated

CpG islands. The study by Flanagan et al., determined DNA

methylation profiles in 33 familial breast cancer samples. This

study primarily focused on identifying differentialmethylation

patterns driven by BRCA1 mutation status and did not report

methylation patterns being associated with subtypes.

Finally we discovered candidate loci for cancer prognosis

with molecular functions associated with cancer - Cell Cycle

and Proliferation (Ki-67, UBE2C, KIF2C, HDAC4), vasculature

development and angiogenesis (VEGF, BTG1, KLF5), transcrip-

tion factors with roles in cell fate commitment (SPRY1, OLIG2,

LHX2 and LHX5). Interestingly over-expression of proliferation

markers such as Ki-67 and UBE2C are already being consid-

ered as prognostic markers (de Azambuja et al., 2007;

Loussouarn et al., 2009) and correspondingly their methyla-

tion levels are lower in patients with poor prognosis. Topoiso-

merase I, which has previously implicated in chemotherapy

resistance, was found to be also a risk factor for recurrence.

The methylation of TOP1 may also have clinical implications

for patients. 30% of breast tumors in our study have an unme-

thylated promoter and these patients were observed to have

a higher likelihood of relapse Topoisomerase expression has

been linked to the development of resistance to topoisomer-

ase inhibitors (Burgess et al., 2008). Demethylation of

TP53BP2 leads to significantly poorer prognosis
( p-value ¼ 1e-03) independent of treatment and other clinical

variables. TP53BP2, which interacts with p53 has been impli-

cated in gastric cancer (Ju et al., 2005). The existence of this ef-

fect in only p53 wild type tumors is intriguing and further

study is needed to determine the functional nature of this

link and likely mechanism of the interaction. An exhaustive

analysis of all significant genes for interaction between them-

selves and p53 mutation status would provide further insight

into the mechanisms of disease progression. Similarly, the in-

teraction between all individual methylation loci which have

prognostic ability have to be evaluated in future studies to

identify combination markers which have better perfor-

mance. The interaction between the individual loci may also

provide insight into the different molecular pathways that

are affected by treatment.

In summary, our studyhas foundevidence for a strongasso-

ciation of DNAmethylationwithin breast cancer subtypes. The

question of whether this association is causal should be the fo-

cus of future studies e especially the high number of signifi-

cantly methylated genes in luminal A subtypes in comparison

with the basal or ErbB2þ subtypes. This is especially intriguing

since we could not find any difference in the overall methyla-

tion levels among the subtypes. While this could be due to in-

nate differences between cell types that may give rise to

Luminal A and basal subtypes, there is no convincing evidence

http://dx.doi.org/10.1016/j.molonc.2010.11.002
http://dx.doi.org/10.1016/j.molonc.2010.11.002
http://dx.doi.org/10.1016/j.molonc.2010.11.002


Table 3eOverlap among methylation patterns identified in Bloushtain-Qimron study withMOMApatterns identified in this study. “UM“ refers
to unmethylated state and “M” methylated state. A”X” denotes a finding of significant correlation in our study.

Gene Name Function Diff Methylation Cell type 1 Diff. Methyl. MOMA Expression Methylation
Correlation

CD24 þ Luminal CD44 þ Progenitor Luminal Basal

DDN M UM M UM X

GATA6 Stem Cell/WNT

signaling

M UM X

TCF7L1 WNT pathway M UM M UM X

FOXC1 Development M UM M UM X

FOXF2 Development M UM M UM X

SOX13 Development M UM X

LHX1 Homeobox M UM M UM

LHX3 Homeobox M UM X

HOXA10 Homeobox M UM M UM

HOXA11 Homeobox M UM M UM

DLX2 Homeobox M UM X

NKX2-8 Homeobox M UM

NKX2-2 Homeobox M UM

NKX2-5 Homeobox M UM

IRX2 Homeobox M UM

IRX5 Homeobox M UM
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that points to thedifferences in thecell typeof origin in thesub-

types. A focused study addressing these questions would

greatly advance our understanding of the breast cancer sub-

types and their implications for treating patients with efficacy.
4. Methods

4.1. Samples

Samples for this study were obtained from a variety of sour-

ces. Samples for MOMA analysis were obtained from the

Oslo Micrometastases Study, ranged from stages I to stage III

patients, and have been described previously (Wiedswang

et al., 2003). A summary of the clinical information on the

samples are provided in Table 1. Normal breast samples for

comparison with MOMA were obtained from the Cooperative

Human Tissue Network collection.

DNA samples for validation by bisulfite sequencing were

obtained from breast tumor and adjacent normal tissues

from women who were undergoing surgery for breast cancer

in Karnataka state in India. The breast tissues were subjected

to histochemical staining to evaluate the proportion of tumor

tissues (>85%). All the tumor tissues were of infiltrating ductal

carcinoma and subjected to immunohistochemical staining

for ER/PR/Her2 analysis. The subjects were of the age group

from 25 to 70 years. This study was approved by Institutional

Ethics Committee of Manipal University and samples were

obtained with informed consent.

4.2. Methylation array and detection Coverage

All annotated CpG islands were obtained from the UCSC ge-

nome browser. These islands were predicted using the pub-

lished Gardiner-Garden and Frommer definition and involves

the following criteria: length >¼ 200bp, %GC >¼ 50%, ob-

served/expected CpG >¼ 0.6. There are 27,325 CpG islands in
the range represented by 159,436MspI fragments on the array.

Arrays were manufactured by Nimblegen Systems Inc using

the 390K format to the following specifications. TheCpG island

annotation from human genome build 33 (hg17) was used to

design a 50mer tiling array. The 50merswere shifted on either

side of the island sequence coordinates to evenly distribute the

island. The 390 K format has 367,658 available features which

would not fit all islands with a 50 mer tiling.

4.3. Sample preparation and hybridization

Representations have been described previously (Lucito et al.,

2003), with the following changes. The primary restriction en-

donuclease used is MspI. After the digestion the following

linkers were ligated: MspI24mer CAGCATCGAGACTGAACG-

CAGCAG, and MspI12mer CGCTGCTGCGTT. The 12 mer is

not phosphorylated and does not ligate. After ligation the ma-

terial is cleaned by phenol-chloroform, precipitated, centri-

fuged, and resuspended. The material is divided in two, half

being digested by the endonuclease McrBC and the other

half being mock digested according to specification by New

England Biolabs. The digestion time is 3 h. As few as four

250-mL tubes were used for each sample pair for amplification

of the representation in a 100ul volume reaction. The cycle

conditions were 95 �C for 1 min, 72 �C for 3 min, for 15 cycles,

followed by a 10-min extension at 72 �C. The contents of the

tubes for each pair were pooled when completed. Representa-

tions were cleaned by phenol-chloroform extraction, precipi-

tated, resuspended, and the concentration determined.

Representations were run on a gel to check for content, the

McrBC digested representation being approximately 100-

150bp shorter on average than the mock. DNA was labelled

as described with minor changes (Lucito et al., 2003). Briefly,

2 mg of DNA template was placed (dissolved in TE at pH 8) in

a 0.2-mL PCR tube. 5 mL of random nanomers (Sigma Genosys)

were added brought up to 25 mL with dH2O, and mixed. The

tubes were placed in Tetrad at 100 �C for 5 min, then on ice
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for 5 min. To this 5 mL of NEB Buffer2, 5 mL of dNTPs (0.6 nm

dCTP, 1.2 nm dATP, dTTP, dGTP), 5 mL of label (Cy3-dCTP or

Cy5-dCTP) from GE Healthcare, 2 mL of NEB Klenow fragment,

and 2 mL dH2O was added. Procedures for hybridization and

washing were followed as reported previously (Lucito et al.,

2003) with the exception that the oven temperature for

hybridization was increased to 50 �C.

4.4. Bisulfite sequencing

Twomicro gram equivalent genomic DNA from matched nor-

mal and tumor tissue biopsy samples were used for bisulfite

treatment using EZ DNA methylation Kit (Zymo research,

USA) according to the manufacturer’s instructions. The

primers were designed by Methyl primer express V.1 (Applied

Biosystems, USA). The primer sequence, amplicon length and

annealing temperatures are mentioned in the Supplemental

Table 6. In brief 100 ng of bisulfite treated DNA was amplified

in a 25uL reaction volume containing 100 ng each of forward

and reverse primer. PCR reaction contained 1XPCR buffer,

200uM dNTPs, 2 units/uL Taq Polymerase (Finnzyme, USA),

using the following PCR conditions: 95 �C for 5 mins (95 �C
for 30sec, respective annealing temp for 1min, 72 �C for

1min)X35 Cycles and 72 �C for 10 mins. Amplifications were

performed in a Veriti Thermocycler (Applied Biosystems,

USA). Following electrophoresis PCR products were gel puri-

fied, precipitated with ethanol and ammonium acetate and

dissolved in sterile MQ water. PCR product was directly se-

quenced in ABI3130 Genetic analyzer (Applied Biosystem,

USA) according to manufacturer’s instructions using big dye

terminator kit. The sequenceswere aligned and checkedman-

ually with the original unconverted sequence to find out the

methylated and unmethylated CpG present at low level and

also to confirm the extent of bisulfite conversion. The percent-

age ofmethylation at each CpG sites were calculated using the

formula peak height for Cytosine/sum of peak height

cytosine þ thymine. Primers and annealing conditions used

are provided in Supplemental Table 6.

4.5. Data analysis and statistics

Microarray images were scanned on a GenePix 4000 B scan-

ner and data was extracted using Nimblescan software (Nim-

blegen Systems Inc). For each probe, the geometric mean of

the ratios (GeoMeanRatio) of control overMcrBc-treated sam-

ples were then calculated for each experiment and its associ-

ated dye swap. The probe intensity ratios for each fragment

were averaged. The intensity ratios can be described as be-

longing to one of the three following categories. (a) When

the log ratio is positive, the fragment’s status is expected to

be methylated, since there is a depletion of the fragment in

the McrBC-treated pool over the mock treated control. (b)

When the log ratio is negative, the fragment is expected to

be unmethylated since the amplification of the depleted

McrBC pool leads to overrepresentation of the individual

fragments from a reduced complexity pool. (c) When the

log ratio is around zero, the fragment status cannot be

inferred solely from that sample alone. This is because a frag-

ment that has negative log ratio in its unmethylated state can

move to a log ratio of around zero when methylated. But
a fragment that has positive log ratio when methylated will

have a zero log ratio when unmethylated. We applied a stan-

dard expectation maximization algorithm for estimating pa-

rameters for amixture of three normal distributions. This EM

algorithm was modified to include the constraint that any

point can belong only to distributions whose means are adja-

cent to the point. This allowed us to avoid a situation where

a single distribution with a high standard deviation is the

most likely source for points that lie nearer to another nor-

mal. We assigned a value to each point of �1, 0, or 1 if its

most likely source is from the normal distribution with the

low, middle, or high mean respectively. We performed this

procedure for each sample which then provided each frag-

ment a probability of being assigned to a 0, �1 or þ1 state.

These probabilities were then discretized into 0, þ1 or �1 us-

ing a threshold of 0.66.

To establish concordance rates of MOMA analysis and en-

sure that our MOMA analysis pipeline is sound, we compared

a set of fragments that were evaluated both by MOMA tech-

nology and by capture-array bisulfate sequencing by Hodges,

E et al (Hodges et al., 2009) in the SKN1 fibroblast and

MDAMB231 breast cancer cell lines. We started with 291 CpG

islands mappable between both technologies. We obtained

815 fragments that were called as methylated or unmethy-

lated by sequencing and were binned into 0,-1 or þ1 in our

MOMA analysis pipeline. In the SKN1 cell line, all 313 (100%)

fragments that were called as unmethylated by MOMA (�1)

were confirmed to be unmethylated by sequencing. Of the

156 fragments called as methylated by MOMA (þ1), 124 (80%)

were confirmed by sequencing. The correlation coefficient of

this analysis was 0.86. The other fragments were called in

the intermediate state (0) by MOMA. In our MOMA analysis,

we use their states in other samples/cell lines to infer relative

methylation levels. 58 of these fragments were also deter-

mined by MOMA to be in the methylated (þ1) state in the

MDAMB231 cell line. We therefore inferred that these frag-

ments had relatively low levels of methylation in SKN1 cells.

Confirming this, 81% of these fragments were determined to

be unmethylated by the sequencing approach.

4.6. Semi-supervised feature subset selection

We used a semi-supervised genetic algorithm directed clus-

tering approach to identify a reduced subset of loci that would

classify the expression. For this purpose we used our evolu-

tionary search tool, a feature selection method on a Genetic

Algorithm (GA) (Schaffer et al., 2005). The GA is executed in

a cross-validation scheme designed to avoid overfitting. First,

we implement a series of outer validation loops where in each

execution of the GA, a portion of the samples is put aside. Of

the 86 normal and tumor samples used, in each repetition of

the GA a learning set of 77 samples are randomly selected

with care to preserve proportional representation of all breast

cancer subtypes. Each GA execution is terminated through

a control within the method that detects when the feature

pool can no longer be effectively recombined into new feature

subsets. In post processing, all discovered feature subsets are

re evaluated and filtered out to eliminate those that failed to

perform consistently throughout the internal loop where

they were evaluated. Of the resulting feature subsets, we
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selected the feature subset that resulted in best hierarchical

clustering on all 86 learning samples. A sequence of 50 outer

loop repetitions was executed for this subset selection.

The GA repeatedly evaluates populations of 100 feature

subsets (i.e. loci subsets) to evolve feature subsets that best

stratify the samples into subtypes. In each iteration 100 such

subsets (or individuals) and up to 100 additional subsets (or

offspring) based on recombination of these individuals are

evaluated and assigned a fitness value. The fitness value is

computed by a fitness function which here computes homo-

geneity of hierarchical clustering based on the feature subset.

It takes as input a subset of the methylation data obtained

based on a subset of the features and a set of samples with

their corresponding subtype annotation based on gene

expression. First, hierarchical clustering with Pearson correla-

tion and complete linkage is performed on this data. The

resulting clustering is then characterized by the homogeneity

of individual clusters when the dendrogram is cut to provide

16 clusters. Based on the subtype annotation, we obtain the

number of samples in each cluster that are of the subtype

that makes the majority of the annotations. The sum of the

majority samples from all clusters is the fitness function.

Clusters of size one or twowere not considered for homogene-

ity and as such reduced the total count. Feature subsets are

compared based on their fitness values and subset sizes. The

GA aims first at maximizing the fitness value and then mini-

mizing the subset size: given two subsets of equal fitness per-

formance, the subset with fewer features is promoted to the

next iteration. Feature subset size variation in individuals is

introduced in the process of creating offspring (see publica-

tion for details on offspring creation).

4.7. Survival analysis

Relapse free survival data was available for a total of 108 sam-

ples in the dataset and was correlated with the methylation

status of each locus. Loci that did not have at least 15 samples

in the minority state were eliminated from consideration for

survival analysis. KaplaneMeier curves were estimated for

eachmethylation state of the selected loci and the differences

between survival curves were estimated using the Man-

teleHaenszel test. In order to ensure that loci did not stratify

the samples purely by chance, we performed 1000 indepen-

dent permutations of the clinical data and recalculated the

survival curve differences for all loci. p-values for individual

loci were estimated by evaluating how often their perfor-

mance was equaled or exceeded in the 1000 random permuta-

tion trials. We then derived q-values from the estimated

p-values by correcting for multiple-testing with a false discov-

ery rate of 5%. Loci with q-values lower than 0.05 were chosen

for further analysis. In order to ensure that the selected loci

are independent of other clinical factors, we performedmulti-

variate Cox regression analysis on each of the selected loci

alongwith node status, tumor size, age, tumor grade, estrogen

receptor status, ErbB2 status, systemic adjuvant therapy, and

hormone therapy. Loci whose Cox regression coefficient

remained statistically significant and did not change by

more than 20% when included with the above pathophysio-

logical variableswere chosen as being independent prognostic

indicators. Themethylation state of any given locus in normal
tissues was assigned as the methylation state of that locus

which accounted for at least 80% of the normal samples.

The above survival analysis was carried out using the survival,

multtest and qvalue packages in R.
4.8. Expressionemethylation correlation

We used a one-sided Wilcoxon signed rank test to check the

alternatehypothesis that the expression level of a gene is signif-

icantly greater when the fragment related to the gene (�5 kb to

þ2 kb of tss) is in a lowermethylation state. Each fragment can

have increasing levels of methylation denoted by “�1”, “0” or

“þ1” states based on the Expectation-Maximization analysis.

Accordingly, for each fragment related to a gene, we performed

three separate tests inwhichwe compared expression levels of

sampleswithmethylation states (i) “�1” to “0”, (ii) “0” to “þ1 and

(iii) “�1” to “þ1”. The test was only performed if each group in

a given comparison had at least 10 samples. P-value threshold

was set at 0.05 for a given test to be declared significant.We still

needed to account for the possibility that the number of signifi-

cant correlations between methylation status and expression

wasnot due to pure chance.We therefore permuted the sample

identifiers of themethylation profiles and repeated the estima-

tion of correlation across all loci. For each of the 1000 permuted

datasets, we estimated the p-values of the correlations between

methylation status and expression values for all the loci. This

distributionallowedus to calculate thenumberof likely correla-

tionsthatwouldoccurbypurechance.Weusedthisbackground

distribution and a false discovery rate of 0.05, which led to the

identification of loci with statistically significant correlations

between their methylation status and expression levels.
Appendix. Supplementary material

Supplementary data related to this article can be found online

at doi:10.1016/j.molonc.2010.11.002.
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