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Finding regions of the genome that are significantly recurrent in
noisy data are a common but difficult problem in present day
computational biology. Cores of recurrent events (CORE) is a
computational approach to solving this problem that is based on
a formalized notion by which “core” intervals explain the ob-
served data, where the number of cores is the “depth” of the
explanation. Given that formalization, we implement CORE as
a combinatorial optimization procedure with depth chosen from
considerations of statistical significance. An important feature of
CORE is its ability to explain data with cores of widely varying
lengths. We examine the performance of this system with syn-
thetic data, and then provide two demonstrations of its utility with
actual data. Applying CORE to a collection of DNA copy number
profiles from single cells of a given tumor, we determine tumor
population phylogeny and find the features that separate subpo-
pulations. Applying CORE to comparative genomic hybridization
data from a large set of tumor samples, we define regions of re-
current copy number aberration in breast cancer.

genome analysis | interval data | statistical inference

Large collections of intervals are a common form of data
generated by high-throughput genomics. For example, DNA

copy number analysis yields intervals of the genome corre-
sponding to gains or losses of DNA segments. Likewise, chro-
matin structure is often reported as intervals of the genome. In
such cases a common goal is inference of contiguous genomic
target regions, which under certain model assumptions, generates
the observed patterns in the data. Such target regions are termed
“cores” in the following text. The typical evidence for such cores is
the presence of “recurrent” observations, suitably defined.
The following two examples illustrate how cores arise in

a specific genomic setting. In the case of nucleosome positioning
problems, the input interval set consists of DNA fragments
obtained by micrococcal nuclease digestion. For an appropriate
digestion regime, fragments protected by nucleosomes will
dominate the set. Cores derived from these input data will cor-
respond to nucleosome positions. As a second example, consider
copy number analysis performed on a collection of individual
DNAs. In this case, each interval in the input represents an
observed region of copy number variation observed in a person.
We can ask, “What are the common genomic copy number
polymorphisms?” Rare variants, spurious segments created by
observation and data processing, and the blurring of interval
boundaries by noise in the observation protocolmake anotherwise
easy problem quite difficult. Cores will then represent genomic
regions where copy number variation recurs in the population with
a frequency unexpected by chance events.
We sought a solution that admits cores with a wide range of

lengths, as is appropriate for data comprised of intervals with
a wide range of lengths. We also sought to avoid explicit prob-
ability models in favor of more general set-theoretic and com-
binatorial methods, to which specific probabilistic assumptions
could be added. We use the term “cores of recurrent events”
(CORE) for our method. Central to CORE is the notion of
explanatory power. A core is a proposed interval that “explains”
an observed interval event by assigning a measure of geometric
association between the two. The task is to find a set of cores that
jointly provide an optimized explanation of the observed events.

We show that certain association measures are more favorable
than others with regard to algorithmic complexity. Next, we show
how to subject the collection of cores to statistical tests for sig-
nificance, so that a minimum number of justified cores, the
“depth” of the solution, can be set. This approach is described
and illustrated with synthetic data. We then demonstrate two
applications with actual data sets: one that facilitates phyloge-
netic analysis and feature extraction for tumor subpopulations
from single-cell copy number profiles and another that identifies
regions of recurrent copy number aberration in breast cancer
made from a large collection of profiles of tumor samples.

Results
Example of the Problem. We first provide one concrete case, both
to provoke intuitions and to clarify language that we will use in
the following sections. Consider genome copy number analysis,
performed for a collection of tumor biopsies. Whether deter-
mined by microarray hybridization (1) or sequence counting (2),
the yield is a set of copy number profiles, one per sample, de-
scribing the amplifications and deletions within the genome of
the tumor of each patient. For a type of cancer, for example
breast or prostate cancer, these events presumably arise rather
randomly throughout the genome of an unstable cell, but are
selected for retention in the successful tumor clones at least in
part by the presence of cancer genes, oncogenes in the amplified
regions, and tumor suppressors in the deleted regions. The
profiles can be further reduced to a set of intervals, regions of the
genome where the amplifications or deletions took place. We
refer to this data-reduction step as “slicing” (see again below).
Some of the intervals may contain the oncogenes and tumor
suppressors that provided selective advantage, and some inter-
vals are present by chance. Intervals of the first class will, in some
sense, share recurrent elements, and intervals of the second class
will not. Sets of genomic intervals that explain many of the ob-
served intervals, for example because they contain cancer genes,
are what we call cores. There are various types of explanation. A
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putative core might explain an interval if the interval contains the
core. Alternatively, a core might explain an interval if they sig-
nificantly overlap. Any number of quantitative relations between
core and interval can be postulated to accommodate a variety of
biological notions. In the end, one wishes to have a minimal set
of cores that “best” explain the data, and that can be subject to
some form of statistical testing for significance. We refer to this
process as CORE.

Formulation of the General Case. The input into CORE is a set of
N intervals dj, j = 1, . . . , N of a given type (for example, am-
plification or deletion events) derived from the observations. The
domain Δ in which these observed intervals reside depends on
the origin of the data. For data originating from genome-wide
analysis, Δ consists of multiple disjoint intervals of the real line,
each representing a chromosome. The objective of CORE is to
find an optimal explanation of the intervals, the solution of
a problem formulated as follows.
For an observed interval dj and an explanatory interval s in Δ,

we define an “explanation” of dj by s as a function E(dj,s) with
values in [0,1]. The specific functional form of E(dj,s) is dictated
by biological considerations. For example, a useful form of E(dj,
s) that reflects the degree of overlap of the two intervals is the
Jaccard index:

J
�
dj; s

�
≡ jdj ∩ sj=jdj ∪ sj: [1]

In this case, s explains dj completely if and only if the two co-
incide and not at all if the two are disjoint. However, a specific
form for E is not required for a general formulation of the
method. We also refer to E(dj,s) as an association measure. In
the following, we use P(dj,s) ≡ 1–E(dj,s), the portion of dj that s
leaves unexplained.
Next, to generalize this concept to a set of explanatory inter-

vals S = {s1,s2, . . . ,sK}, we define the portion P(dj,SK) of dj left
unexplained by S as:

P
�
dj; s

�
≡ ∏

K

k¼1
P
�
dj; sk

�
: [2]

Finally, to generalize even further, we write the unexplained
portion of the entire observed interval set D = {d1,d2, . . . ,dN} as
defined by summation over the events:

PðD; SÞ≡ ∑
N

j¼1
P
�
dj; S

� ¼ ∑
N

j¼1
∏
K

k¼1
P
�
dj; s

�
: [3]

For a fixed number of explanatory intervals K, we seek to min-
imize P(D,S) over all possible sets S of K explaining intervals.
Any such solution set of explaining intervals, CK = {c1,c2, . . . ,cK}
will be called “optimal” and the individual elements cores. Note
that we have not so far specified the appropriate number K of
cores to be sought. This question is addressed later when we
consider the statistical assessment of cores.

Forms of Explanation. The computational complexity of the min-
imization problem depends on the form of explanation. From
now on, we consider important restricted cases of explanation in
which P(D,S) cannot attain a minimum unless each boundary of
the cores sk coincides with that of one of the observed intervals.
With this proviso, minimization of P(D,S) requires considering
only a finite set of explaining intervals, namely those bound by
O(N2) pair-wise combinations of the boundaries of the N events.
Consequently, the quantities Pjk ≡ P(dj,sk) form a finite matrix
of N rows and O(N2) columns, and the problem amounts to
a choice of K columns such that Eq. 3 is minimized—that is, the
minimizaton becomes a combinatorial problem.

To permit such minimization by a finite search, it is sufficient
for P(D,S) to be concave or linear as a function of either bound-
ary position of sk for all k, in any interval between adjacent event
boundaries in D. In particular, this condition is satisfied for the
following three special forms of association measures, E(d,s):
(first) E(d,s) = 1 if s⊆d and otherwise E(d,s) = 0; (second)
the Jaccard index J(d,s) raised to a power P ≥ 1; (third) E(d,s) =
f(jsj/jdj), where f is any strictly convex or linear function on
the interval [0,1] with a range contained in [0,1] when s⊆d and
otherwise E(d,s) = 0.
These three forms of explanation capture different aspects of

recurrence. The first form is especially simple and is designed to
seek the genomic positions with the highest possible combined
event count. However, this form of explanation ignores the
degree of overlap among events explained by a given s and
emphasizes regions where events overlap. The ability to detect
clustering of broad events is thus reduced, especially when the
broad events contain regions of narrow events that can be re-
current. On the other hand, the second and third explanation
forms favor explanatory intervals at the intersection of multiple
events with approximately coincident boundaries. Each core will
therefore tend to be representative of a large number of similar
genomic lesions.

Minimization of the Unexplained Portion. The minimization prob-
lem defined by the first form of explanation as defined above is
an instance of the p-coverage location problem, exactly solvable
by dynamic programming in O(KN2) time (3), making this form
of explanation computationally advantageous. To our knowl-
edge, however, no general algorithm with execution time poly-
nomial in K has been found for the exact minimization problem
as posed in Eq. 3, even if P(D,S) permits combinatorial mini-
mization. In the absence of such a solution, we offer an iter-
ative greedy procedure for finding cores that has a polynomial
time complexity.
We initialize at i= 0 by setting C0 =∅ and P(dj,C0) = 1 for all j.

Then, at the i-th iteration, ci = argmins ∑j P(dj,Ci–1)P(dj,s) is
found, and Ci is formed by adding ci to Ci–1. To continue the
iteration efficiently, P(dj,Ci) is stored for each j, computed as in
Eq. 1 above: P(dj,Ci) = P(dj,Ci–1)P(dj,ci). The execution time of
an individual iteration is independent of i, and the total execu-
tion time is proportional to K. Moreover, with any of the three
explanatory forms, only a finite number of explanatory intervals
need be searched at each iteration, and the greedy solution must
search no more than O(N2) candidate explaining intervals. As
the unexplained portion is a sum over N terms, the execution
time is not greater than O(KN3). We will consider only greedy
solutions for the remainder of this work.
Note that the Eqs. 2 and 3 can be generalized by the inclusion

of weights for each event. In particular, the i-th minimization
step of the greedy procedure may be interpreted as finding
a single optimal core for the observed interval set D, but with
each event dj of D assigned a weight Wj,i–1 = P(dj,Ci–1), namely
the portion of dj left unexplained by previous cores. We view the
set of intervals with their weights P(dj,Ci–1) as the remaining
unexplained data after the i-th iteration. This interpretation is
used next in assessing the statistical significance of a new core.

Statistical Criteria for Depth. We tackle now a way to determine
the depth of analysis, the lowest number of intervals that give
a sufficient explanation of the data. Such a determination is
made by seeking the lowest value for K such that the remaining
unexplained data no longer display an unexpected amount of
recurrence—that is, there is no new interval with a surprising
amount of explanatory power. To determine this, we use a score,
the amount of explanation gained from unexplained data by
adding a new core, and compare this score to the scores obtained
after the randomization of the unexplained data.
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The total explanation provided by the core set CK is N–P(D,
CK). The gain in explanation from the K-th core is then GK =
P(D,CK–1) – P(D,CK). For an exact solution of the problem, it is
generally not true that CK is obtained by adding one core to CK–1.
However, this is an intrinsic property for our greedy solution to
the problem, so for the greedy case we can define the score of the
optimal interval, cK, as:

GK ¼ ΣjWj;K-1E
�
dj; cK

� ¼ maxsΣjWj;K-1E
�
dj; s

�
: [4]

We seek to evaluate the statistical significance of this score,
judging thereby the significance of the core itself. Significance is
determined by testing the null hypothesis that the K-th observed
score is not improbably high in the set of weighted events with
the event randomly placed in the genome.
More specifically, we sample from the null distribution of the

score. After m iterations of CORE, we generate multiple in-
dependent trials. In each trial, each event dj is transformed into
an event d′j by a random placement, while its weightWj,m–1 is left
unchanged. We then estimate the probability of a value Gm or
larger would be drawn from the distribution ofG′m=maxs∑j Wj,m–1
E(d′j,s) generated from the multiple trials. Typically we perform
1,000 trials. If M+1 is the smallest m for which the null hy-
pothesis cannot be rejected, the first M cores are retained.
Because events occur on chromosomes, and the events can

themselves be large, on the order of the size of chromosomes,
we must modify the above random translation scheme. The hu-
man chromosomes have broadly varying lengths, and a large
event on chromosome 1, for example, cannot be translated to
chromosome 21, restricting drastically our ability to randomize
its placement. Therefore, when the observed interval data are
randomly placed onto human chromosomes, we consider not the
absolute length of an event but its length relative to the length of
the chromosome on which it occurs. As we see next, this scheme
appears to behave as expected.

Synthetic Data. To evaluate the performance of CORE and to
examine the statistical test for depth, we first simulated sets of
interval events with built-in recurrence. Multiple parameters are
required to specify such sets. Exploration of this multidimen-
sional parameter space in a systematic way is not feasible, and so
we provide one illustrative simulation, representative of several
others we conducted, which was created as follows. First, we
chose R = 5 recurrent regions with integer-valued lengths in the
interval I = [0,2000]. The lengths of the regions were sampled at
random from an exponential distribution with a mean value of
Λ = 500 and rounded to the nearest integer. Given the length of
a region, its position in I was chosen at random, among all
possible positions with integer boundaries. Next, the total of
NR = 200 events were assigned to these recurrent regions at
random, with equal probability for all possible five-way partitions
of 200. For each event, boundaries were set so that the event
contained the region to which it was assigned, drawing the dis-
tance between the left (right) boundary of the event and that of
the region from an exponential distribution with a mean value
equal to σ = 1/4 of the length of the region and rounded to the
nearest integer. Finally, NB = 100 background events were added
to the set, by choosing 100 lengths from the set of 200 recurrent
events with replacement and placing events of those lengths at
random in the [0,2000] interval. A set of 300 events with integer
boundary positions between 0 and 2000 was thus generated.
The resulting set of events was analyzed by CORE, with the

third form of explanation and with f(x) = x. An analysis of one
instance of a simulated event set, arbitrarily chosen, is illustrated
in Figs. 1 and 2 and Dataset S1. CORE is able to accurately
recover four out of the five recurrent regions, failing to recover

a region whose small event count makes it indistinguishable from
the background.
Significance analysis of the cores derived from the simulated set

was performedas described above. The result of this analysis is shown
in Fig. 2 for the interval data and the cores illustrated in Fig. 1. The
top five scores are found to be significant. These correspond to the
four underlying regions of highest recurrence, with the most re-
current region giving rise to two nearly coincident high-scoring cores.
Note that the scores of the superfluous cores from the simulation
appear to match well the empirical null distribution of the scores.
The success of this example, and many others we created, gave

us sufficient confidence both in our formulations and coding
to proceed with applications to existing empirical data sets. We
focus on the third explanatory form in all of the following.

Applications to Cancer. All of our subsequent applications are
performed on copy number profiles derived from cancer DNA,
either biopsies or single cells from biopsies. A copy number
profile is a piecewise constant function of genomic position, with
everywhere a value of two for a normal genome without copy
number polymorphisms. The inputs to CORE in all cases are not
the profiles themselves, but the joint collection of intervals of
constant value from which each profile can be constructed. These
intervals are the input to CORE and are derived by a process we
call slicing, which is described in the Methods section. We show
two types of application, the first application being to phyloge-
netic analysis of single-cell data and the second to regions of
common aberration in breast cancers.

Phylogeny from Single-Cell Data. We previously used single-cell
cancer copy number data to distinguish subpopulations with
shared but distinct genomic history (2). The universally shared
copy number lesions mark the ancestral trunk, while each main
branch of the phylogenetic tree has its own distinctive copy
number events. Within the branches there are presumably newer
events that are unique to the single cells in the sample. Our
previous methods were provisional, and here we explore using
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Fig. 1. CORE analysis of a simulated set of events. The red-hashed rec-
tangles indicate the positions and event counts of the five recurrent regions
used to simulate data. The dashed line gives the event count for 200 events
assigned to recurrent regions and the solid line the joint event count for
these 200 and additional 100 background events. The blue Pi shapes indicate
the positions and CORE scores of the five significant (P < 0.05) cores.

Krasnitz et al. PNAS | Published online June 6, 2013 | E2273

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

ST
A
TI
ST

IC
S

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1306909110/-/DCSupplemental/sd01.xlsx


CORE as the analysis engine for such data, with the idea of
identifying the recurrent events—those common to the trunk
and those common to particular branches—while ignoring events
that are not shared or insignificantly recurrent. We use the cores
to build a tree, and then use supervised clustering to identify the
distinguishing events. We look at two cases.
In the first case, tumor T10, single cells came from a primary

breast tumor. FACS analysis of cells sampled from this tumor
identified four distinct populations by ploidy (mean copy num-
ber): two aneuploid populations, one hypo-diploid, and one
diploid. Dataset S2A provides the set of events derived by slicing
in this case. CORE analysis of this set yields 172 amplification
cores and 182 deletion cores at P = 0.05 level of significance.
Dataset S2 B and C lists the position, significance, and scores for
each of these cores. We next compute an incidence table of the
overlap of each profile with the significant cores, using the pro-
cedure described in the Methods section. The table is presented
in full in Dataset S2D, and its image is shown in Fig. 3 as a heat
map. The rows are organized in a manner we will soon describe.
It is clearly seen that some of the cells in the set correspond to
sparse and some to dense—that is, event-rich—rows of the table.
The former derive from the diploid population, while the latter
are from the hypo-diploid population rich in deletions and the
aneuploid populations, which are richer in amplifications.
To examine the phylogeny of cell populations, we previously

used two different metrics, one a Hamming distance based on
shared interval breakpoints and another based on the absolute
difference in the copy number (2). These metrics were used to
compute phylogenetic trees. We returned to this problem using
an incidence table (Methods). The incidence table is a J×K ma-
trix, with J being the number of profiles and K the number of
cores. Each row of the matrix can be viewed as a compression of
the profile, decomposing the profile into the core elements. The
matrix element, Tjk, is computed as the maximum explanation
over all of the intervals of profile j by core k. All matrix elements
of T are therefore in the [0,1] range.
We explored the phylogeny based on the Euclidean distance

between rows (i.e., single cells) of the incidence table. Each core
contributes equally, irrespective of its length, and so this metric

more closely resembles the breakpoint method but incorporates
information about intervals, namely the pairs of breakpoints
(the breakpoints that define intervals). We generated a phyoge-
netic tree using hierarchical clustering with Ward linkage. It is
this tree that defines the order of the rows in Fig. 3. The phylogeny
cleanly separates the cells in the samples by ploidy. Essentially
the same separation was accomplished by neighbor-joining
method of phylogeny reconstruction (Fig. S1).
In our next example, tumor T16, the single cells came from

a primary and a metastatic site. Unlike T10, which has a pattern
we call polygenomic, only one profile dominates in the aneuploid
cells from each site, a pattern we call monogenomic. Dataset
S3A provides the set of events derived by slicing in this case. The
resulting amplification and deletion cores are listed, respectively,
in Dataset S3 B and C. Dataset S3D is the incidence table for this
case. The image of the incidence table is shown in Fig. 4, with the
dense aneuploid and sparse diploid sectors clearly visible.
Based on the incidence table of T16 (Fig. 4), we achieve clear

separation into three subpopulations, one the separation by
ploidy and among the aneuploid a separation of metastatic and
primary sites. These populations also are nearly perfectly sepa-
rated by the neighbor-joining algorithm (Fig. S2), the only ex-
ception being a primary aneuploid cell (A17), which clusters with
the metastatic aneuploid population. In our previous phyloge-
netic analysis of T16 (2), we had difficulty distinguishing the
metastatic and primary cells.
With phylogeny determined by CORE, we observe a separation

in the diploid population that we had previously not appreciated.
As can be seen in Fig. 4, there are two populations of diploid cells,
drawn roughly equally from the primary and metastatic sites.
Upon closer analysis, we found that the distinction between these
two populations is the frequency of deletions near the ends of
chromosomes. Two such populations are not seen in the diploid
cells from T10, which closely resemble the subpopulation of T16
with frequent deletions. We do not know at this time whether this
represents an artifact of single-cell copy number measurement or
interesting biology, but we expect the former.
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Fig. 2. Significance analysis of cores derived from a simulated set of 300
events, as illustrated in Fig. 1. The observed scores are shown in red, plotted
against the unexplained portion as defined by Eq. 3. Each of the box plots
represents the corresponding empirical null distribution of the scores.

Fig. 3. Heat map of T10 incidence table, with rows corresponding to cells
and columns to CORE cores. The amplification and deletion subtables are
indicated by the blue and red horizontal bars. The order of cores in each
subtable are left to right by the descending value of their CORE scores.
Darker shades of gray correspond to higher values in the table. The order of
the cells is clustered by the phylogenetic tree (on left) with horizontal dis-
tance related to distance. The tree yields a perfect separation of the
(pseudo)diploid, hypodiploid, and the two aneuploid populations. The ver-
tical color bar encodes the cell subpopulation label: yellow for aneuploid A,
red for aneuploid B, blue for the hypodiploid, and green for diploid and
pseudodiploid.
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The genomic distinctions between metastatic and primary
cells are of biological importance. We therefore sought to detect
cores that are markers of the primary or metastatic location
within the aneuploid population. For this purpose, we applied
the Random Forests (RF) classifier (Methods). Indeed, we could
readily separate by RF the cells of the two populations with
100% accuracy. In Table 1 we list the four cores found to be the
most important classifying features by RF. Three of the four are
better matched by intervals in the metastatic than in the primary
cells, and one the reverse. To quantify the observations statisti-
cally, we examined, for each of these cores, the significance of
association between the discriminating core and the label (pri-
mary or metastatic) using Fisher’s exact test, adjusting for mul-
tiple hypothesis correction as explained in the Methods section.
The resulting P values are reported in Table 1.
In a completely analogous fashion, we applied the RF classi-

fier to separate diploid from aneuploid cells in T16. Here again,
the algorithm separated the two with 100% accuracy. While the
distinction between these two populations is strikingly apparent
in Fig. 4, it is still of interest to identify cores that best distinguish
between the two. We find 27 cores of the highest importance by
RF (Table S1). It is noteworthy that some of these cores harbor
validated cancer genes. For example, core D13 delineates a narrow
region of chromosome 9 containing cyclin-dependent kinase in-
hibitor 2A (CDKN2A) and is homozygously deleted in all of the
aneuploid cells.

Common Cores of Aberration in Breast Cancers. This last application
(distinctive differences in populations of cancer cells within
the same person) has an important generalization—namely,
the example we proposed at the beginning of the Results section.
Can we use CORE to identify the boundaries of significantly
recurring amplifications and deletions within the cancers of many
different patients? We attempted this with two published sets of
copy number profiles of breast tumors, both from Scandinavia
and both analyzed on the same array hybridization platform
(1,4). Although we had previously noted regions of recurrent
aberrations, we did not have until now a single method that we
trusted to describe events, both narrow and broad.
Profiles were processed as described in the Methods section.

Amplification and deletion events derived by slicing are listed in
Dataset S4A. Cores were then derived separately for amplifica-
tion and deletion events. Analysis of significance was performed
(Methods), resulting in 44 amplification and 22 deletion cores at
P = 0.05 level of significance. The observed scores are compared
with their empirical null distributions in Fig. 5. The significant
amplification and deletion cores explained about one-fifth of the
data, and are reported, respectively, in Dataset S4 B and C and
shown in Fig. 6. The amplification cores span a broad range of
widths, from 165 Kb to over 95 Mb. The top-scoring broad cores
correspond to well-known features of breast cancer copy number
landscape such as whole-arm amplifications of 1q, 8q, and 16p.
On the opposite end of the width spectrum are 11 narrow cores,
each containing fewer than 35 genes. Ten of these 11 cores con-
tain known driver genes, notably v-erb-b2 erythroblastic leukemia
viral oncogene homolog 2 (ERBB2), cyclin D1 (CCND1), and
insulin-like growth factor 1 receptor (IGF1R). The gene content
of the narrow cores is reported in detail in Dataset S4D. The
narrowest core bracketing v-myc myelocytomatosis viral onco-
gene homolog (avian) (MYC) is 11.8 Mb wide and contains
54 genes.
On the other hand, we find no narrow deletion cores. The

narrowest of these is 8.2 Mb wide and contains 46 genes. Simi-
larly to amplification cores, the top-scoring deletion cores rep-
resent familiar features of somatic copy number variation in
breast cancer, in particular whole-arm deletions of 16q, 8p, 17p
(thus deleting TP53), and 11q.

Methods
Incidence Table for Profiles and Cores. In the case of DNA copy number analysis
discussed in the following, the input set of intervals is formed by copy number
events (gains or losses), each originating in one of multiple copy number
profiles. Each profile represents a biological entity such as a tissue sample or
a cell. Having derived K cores from this joint input set, we construct an in-
cidence table T that quantifies how well each core performs in each profile.
The incidence table is thus an L×Kmatrix, L being the number of profiles and
K the number of cores. Each of its matrix elements, Tlk, is computed as the
maximum over all of the intervals in profile l of the explanations by core k. In
other words, Tlk is the explanation of the best fit of core k to profile l. It
follows from this definition that all matrix elements of T are in the
[0,1] range.

Fig. 4. Heat map of T16 incidence table with rows corresponding to cells
and columns to cores. The amplification and deletion subtables and row and
column order and shading of the heat map are as described for Fig. 3. The
vertical color bar encodes the cell subpopulation label: red for the primary
aneuploid, black for the metastatic aneuploid, green for the primary diploid
and pseudodiploid, and blue for the metastatic diploid. The phylogenetic
tree for the cells is shown on the left, with a perfect separation of the pri-
mary and metastatic aneuploid populations.

Table 1. Four important cores (RF importance score of at least 1) for distinguishing primary and
metastatic aneuploid cells in T16

Core Importance Chromosome Start End Score Cutpoint M– P– M+ P+ Fisher P

A48 1.7 11 120556477 134452384 10.9 0.0 22 0 0 16 5.40 × 10−10

A13 1.41 3 98933466 154624504 36.3 0.87 1 16 21 0 1.61 × 10−8

D30 1.24 10 42735344 135374737 20.9 0.0 1 16 21 0 5.35 × 10−9

D8 1.01 9 70584473 140273252 46.5 0.779 2 16 20 0 9.63 × 10−8

For each, the genomic position (“start” and “end”), CORE “score,” and its optimal threshold, “cutpoint,” are
tabulated together with the corrected Fisher P value (Methods) for association with the subpopulation label. The
numbers of metastatic aneuploid cells scoring above and at/below the optimal cutpoint are given in the M+ and
M– columns. The corresponding numbers of the primary aneuploid cells are given in the P+ and P– columns.
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Using the Incidence Table for Marker Detection. If we have class labels for our
copy number profiles, we may wish to know which of the derived cores are
useful as markers for the class. To this end we use the RF classifier (5). Two
properties of RF make it useful for this purpose. First of all, RF does not
overfit, and its classification accuracy can be reliably judged from the
training data. Secondly, RF is able to quantify the importance of each fea-
ture for classification. For marker detection we proceeded as follows. First,
RF is trained to predict the class label on the entire incidence table. We then
rank cores by their “importance” as defined by RF. For each of a small
number of top-ranking cores, we perform the following additional assess-
ment of its significance as a marker. For a given core, and hence a column in
the incidence table, all of the distinct values in the column are found. Then,
using each of the distinct values in turn as a threshold, Fisher’s exact test is
applied to the contingency table built from the association between the
class label and the value being above the threshold for the core in the in-
cidence table. The number of tests conducted is thus equal to the number of
distinct values in the column. The lowest Fisher P value thus found is cor-
rected for this multiplicity of tests, and the result is taken as the P value for
association between the core and the label.

Breast Cancer Data. For analysis of individual tumor subpopulations, we use
single-cell copy number data we previously described for human breast
cancer tumors T10 and T16 (2). The data consist of bin counts of sequence
reads, segmented, and then converted to integer copy number segments. A
total of 50,009 bins cover the entire genome, laid out in the usual order of
chromosomes: 1, . . . , 22, X, Y.

For analysis of the cores from profiles of tumors of populations of patients,
we use a combination of two published sets of copy number profiles of breast
tumors, the WZ set (1) and the MicMa set (4), both obtained by microarray
hybridization. These profiles represent DNA copy number averaged over
multiple tumor cells, likely being an admixture of different subpopulations
and normal cells (“mixed cell population data”). Profiles are masked for
common copy number variation as described in ref. 1. For comparison, we
used normal individual genome profiles obtained from the same platform (6).

Processing Breast Cancer Data. To use CORE, we must first extract interval
events from segmented (7) copy number profiles. The method of trans-
forming each profile into a set of intervals differs for single-cell data and for
mixed-cell population data. In both cases, we use a process we call slicing.
We then find the significant cores, and create an incidence table.

To slice profiles from single cells, we determine the median ploidy for each
cell, defined as the median of integer copy numbers for all bins. Segments
above the median ploidy are considered amplified, and those below deleted.
There is no restriction on the segment lengths, and these range from the
shortest detectable by the segmentation algorithm to an entire chromosome.
For each integer value of copy number except themedianploidy, we determine
a unique set of largest intervals that can be placed without disruption into
the profile (illustrated for a portion of chromosome 1 in Fig. 7). In essence, this
procedure is a simplified version of the ziggurat deconstruction algorithm (8).
Note that the information about the degree of copy number change caused
by an amplification or a deletion event is lost in this transformation. The input
into CORE, separately for amplifications and deletions, is formed by pooling
the intervals, with start and end positions specified as bin numbers.

Slicing mixed-cell population data are more complicated because the copy
number need not be integer, and hence requires more preprocessing. We
followed the protocol from a previous publication (9), with one addition. We
determine a suitable threshold such that segments deviating by more than
that threshold from the center (as defined in ref. 9) are considered copy
number events. The threshold is derived from a set of normalized and seg-
mented noncancer copy number profiles originating from the same plat-
form as the cancer set in question and centered at the median. Segments
where large deviations from the median are expected are removed from the
noncancer set. These include segments in chromosomes X and Y and seg-
ments shorter than 5 Mb. The threshold for amplification (deletion) is then
set by the top (bottom) 0.02% of all segmented log ratio probe values of the
remaining segments. Microarray probe numbers were used to specify the
start and end positions of copy number events derived by slicing.

Availability of Software. An implementation of CORE as an R package is
available upon request and includes tools for computing core positions and
scores and for assessing the statistical significance of scores, with a choice
among measures of association as described here. In addition, R software is
available for the analysis of integer copy number data, both upstream and
downstream of CORE, including the slicing procedure and the derivation of
the incidence table that we used to examine the subpopulation structure of
breast tumors. R code for generating a simulated event configuration for
arbitrary R, I, Λ, NR , σ, NB (Results) will also be provided upon request.

Data Access. Sequencing data for T10 and T16, mapped to version 18
of human genome, are available online from the Sequence Read Archive
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Fig. 5. Significance analysis of amplification and deletion cores derived
from the combined WZ and MicMa set of 257 copy number profiles of breast
tumors. The core scores are plotted against the unexplained portion as de-
fined by Eq. 3. The observed scores are shown in red. Each of the box plots
represents the corresponding empirical null distribution of the scores. Por-
tions of the plot to the right of the dashed lines correspond to statistically
significant (P < 0.05) cores.
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Fig. 6. Significant (P < 0.05) cores derived from the combined WZ and
MicMa set of copy number profiles of breast tumors, shown as color bars at
the chromosomal locations where they occur. The 44 amplification (22 de-
letion) cores are shown above (below) the corresponding chromosomes in
blue (red and orange). Darker colors correspond to higher CORE scores.
Genomic positions of four accepted driver genes (MYC, CCND1, IGF1R, and
ERBB2) are indicated by arrows.
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(www.ncbi.nlm.nih.gov/sra), accession code SPR002535. Tumor DNA copy
number data for the WZ and MicMa cohorts, mapped to version 17 of hu-
man genome, are available online from the Gene Expression Omnibus
(www.ncbi.nlm.nih.gov/geo/), record GSE19425, and the corresponding
microarray annotation table is available as record GPL9776.

Discussion
CORE is a general approach to inference from interval data.
Given a collection of observed events and a geometric associa-
tion measure between events and explanatory intervals, CORE
finds a given number of explanatory cores that maximizes the
explanation. When the association measure is drawn from three
broad varieties outlined in the text, for example the Jaccard
index, we find a greedy solution with algorithmic complexity
O(KN3), where N is the number of events and K is the number
of cores. We believe our formulation of the problem is “natural”
in the sense that it captures the manner in which a human ob-
server seeks to find fundamental intervals behind a set of re-
current events in the presence of noisy events and boundaries.
A previous paper included an analysis of nucleosome posi-

tioning that used a version of CORE based on the first form of
association measure (Methods) (10). For this form and problem,
known as the p-coverage location problem (3), exactly optimal
solutions can be found in O(KN3) time. However, this form of
explanation does not usually capture the richness of an underlying
interval data. We are continuing studies of nucleosome posi-
tioning with more powerful varieties of geometric association,
using the algorithmic methods described here.
In this article we address the more common problem of in-

terval events representing genome copy number variation. We
apply the third form of explanation to two particular problem
classes encountered in our research: (i) determining the sub-
population structure of a tumor and (ii) defining the regions of
recurring aberration in large collections of breast cancers. For
the first problem, we could have equally chosen as explanatory
measure the Jaccard index raised to a power. For the second
problem, our choice was motivated by the belief that amplifica-
tion events have drivers, transcribed regions with objectively
defined borders that are contained within the events.

Our method is greedy and iterative. For any such procedure,
overinterpretation is a major concern. To provide a plausible depth
of analysis, we implemented a permutation test. After each itera-
tion through the data, each interval is reweighted to the extent that it
remains unexplained. We then determine whether the reweighted,
or residual, data have unexpected recurrence. We stop when the
residual data no longer display a statistically unexpected amount of
recurrence. We have no proof that our statistical method stops in
the general case, but in simulations and actual data, it does.
In the first application, we use CORE for subpopulation anal-

ysis by reanalyzing single-cell data from two breast cancer patients,
one with a primary cancer and one with both a primary and
metastatic lesion. We transform the copy number profiles of each
cell by slicing, a simplified version of ziggurat deconstruction (8)
that produces a set of events from each single profile. The cores
provide a reduced representation of the significantly recurrent
events in the totality of cells, and an incidence table is computed
that represents the copy number profile of each cell as the over-
lap of its events with the cores. We use the incidence table for
supervised (RF) and unsupervised (hierarchical clustering
and neighbor joining) learning of subpopulation structure. We
learn the events that distinguish the metastatic from primary
cells, and construct phylogenetic trees that are completely com-
patible with trees constructed by our previous methods. Using
cores and incidence tables for phylogeny has the major theoretical
advantage over our previous methods in that it gives rise to a
metric between single cells that is continuously valued but based
on pairs of recurrent boundaries.
In the second application, CORE is used to summarize re-

current events in tumor profiles of a given tissue type. For breast
cancers, we find on the order of 70 statistically significant re-
currently amplified or deleted cores, thus enabling us to repre-
sent a tumor in terms of this reduced set of elements. In so doing,
we can overcome to a large extent the problem of multiple hy-
pothesis testing when looking for biomarkers of sensitivity to
chemotherapy (work in progress). Cores can be used for pre-
diction of survival for ovarian cancer (also work in progress). In
yet another utility, CORE provides an automated method to find
candidate oncogenes or tumor suppressor genes in narrow
events. In fact many of the narrow amplification cores do contain
familiar oncogenes (Dataset S4 B and D and Fig. 6).
Our emphasis in the present work is DNA copy number var-

iation. A particularly challenging aspect common to such data
are the broad range of lengths of recurrent events, extending
from the smallest observable on a given platform to an entire
chromosome. Other methods of recurrence analysis that are
focused on position-wise event count are blind to the distinction
between common narrow events and broad events. However,
broad recurrent events may be critical in cancer progression, as
the core regions of aberration may contain multiple tumor sup-
pressor genes (11). Genome events cannot be assumed to target
a single functionally important gene.
The genomic identification of significant targets in cancer

(GISTIC) method addresses this problem by separating events
into broad and focal using a fixed width threshold and by han-
dling the two groups of events separately (8, 12). The signif-
icance testing for aberrant copy number (STAC) algorithm (13)
takes into account the consistency of event pileups to assess re-
currence, but the reported measure of recurrence is a local
function of genomic position. By contrast, separation of event
pileups into broad and narrow ones is not necessary in CORE.
With association measures such as those used here, the output of
CORE is a table of extended objects (cores), and the char-
acteristic width of events defining a core is dictated by the ob-
served data. These features of CORE are shared with the
method presented by Ionita et al. (14), but unlike CORE, that
method requires model assumptions about the distribution of
event lengths and single point-like drivers.
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Fig. 7. Slicing. A portion of the integer copy number profile of chromosome
1 in the primary cell A5 of tumor T16 (in black) is sliced into four unique
interval events (in red). The basal copy number for this cell is 4 (shown by
a dashed line).
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An additional advantage of CORE compared with other meth-
ods of interval data analysis lies in its ability to offer a choice of
options to suit the genomic problem at hand. This choice includes,
in addition to a variety of core-to-event association measures,
a freedom to weigh events according to their importance in a given
context. For example, weightsmay be used to filter out certain types
of events, or set as a decreasing function of the event lengths to
emphasize focal events. In application to copy-number analysis,
weights may be set as an increasing function of the magnitude of
copy-number change caused by the events. We supply software to
facilitate exploration of these options by the end user.
We do not wish to imply that all problems for analyzing in-

terval data are solved with the tools we have provided. Indeed,

that is not the case. We are continuing to examine additional
avenues, such as association measures optimized for treat-
ment of measurement error, unique protocols for preprocessing
data, and recursive applications of CORE for phyloge-
netic analysis.
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