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We have developed a versatile statistical analysis algorithm for the
detection of genomic aberrations in human cancer cell lines. The
algorithm analyzes genomic data obtained from a variety of array
technologies, such as oligonucleotide array, bacterial artificial
chromosome array, or array-based comparative genomic hybrid-
ization, that operate by hybridizing with genomic material ob-
tained from cancer and normal cells and allow detection of regions
of the genome with altered copy number. The number of probes
(i.e., resolution), the amount of uncharacterized noise per probe,
and the severity of chromosomal aberrations per chromosomal
region may vary with the underlying technology, biological sam-
ple, and sample preparation. Constrained by these uncertainties,
our algorithm aims at robustness by using a priorless maximum
a posteriori estimator and at efficiency by a dynamic programming
implementation. We illustrate these characteristics of our algo-
rithm by applying it to data obtained from representational oli-
gonucleotide microarray analysis and array-based comparative
genomic hybridization technology as well as to synthetic data
obtained from an artificial model whose properties can be varied
computationally. The algorithm can combine data from multiple
sources and thus facilitate the discovery of genes and markers
important in cancer, as well as the discovery of loci important in
inherited genetic disease.

array-based comparative genomic hybridization � copy-number
fluctuations � maximum a posteriori estimator

Genomes in a population are polymorphic, giving rise to
diversity and variation. In cancer, even somatic cell genomes

can rearrange themselves, often resulting in genomic deletion
(hemi- or homozygous) and amplifications. Means for assessing
these chromosomal aberrations quickly, inexpensively, and ac-
curately have many potential scientific, clinical, and therapeutic
implications (1, 2), particularly in the genomics of cancer and
inherited diseases. Genome-based methods for studying cancer,
in contrast to the gene expression-based methods, can exploit the
stability of DNA (as a component of the cancerous cell, which
does not vary as a function of the cell’s physiological state).
Karyotyping, determination of ploidy, and comparative genomic
hybridization have been useful tools for this purpose even though
they are crude and produce data that must be processed by
sophisticated statistical algorithms to serve as useful guides to
diagnosis and treatment.

Microarray methods are an important new technology that can
be used to study variations between regular and cancer genomes.
Imagine that one can sample the genome uniformly (indepen-
dently and identically distributed) and reproducibly to create a
large number of oligonucleotides (on the order of 100,000
probes) located every 30 kb or so. These oligonucleotides almost
always come from regions of the genome that do not share
homologous sequences elsewhere in the genome. These se-
quences (typically less than a few hundred base pairs long)
occupy unique positions in the normal genome and have exactly
two copies.

If one such oligonucleotide belongs to a region in a cancer
genome that has an altered copy number, say, c (0 � c � 2), then

when the cancer genome is sampled, this oligonucleotide will
occur with a probability that is c�2 times that in the regular
genome. The copy number can be computed by a ratiometric
measurement of the abundance of an oligonucleotide in a cancer
sample measured against that in the regular genome. This
technique can be generalized to measure the copy number
variations for many probes simultaneously with high-throughput
microarray experiments. Even though the ratiometric measure-
ments used and the associated regularizations tame the multi-
plicative noises in the system to some extent, there remains a
large amount of uncharacterized noise (generally additive) that
can render the data worthless unless a proper data-analysis
algorithm is applied. Because the data may come from multiple
sources collected with varying protocols, such an algorithm must
be general and be based on a minimal set of prior assumptions
about the methods. The algorithm we describe below reflects
these desiderata.

Our Bayesian approach constructs a most plausible hypothesis
concerning regional changes and the corresponding associated
copy number. It can be viewed as an optimization process
minimizing a score function that assigns penalties of different
type for each kind of deviation from genomic normality (break-
points, unexplainable probe values, noise, etc.); we discuss how
these penalties are derived. We describe various algorithmic
alternatives, their implementations, and the empirical results
derived using real data (where the underlying facts are not
directly verifiable) and simulated data (where the true facts are
known).

Statistical Model
We start by describing a probabilistic generative model for
observed copy number data. The model is Bayesian in spirit, in
that we use parameterized prior distributions and use the
posterior distribution function to estimate the underlying model.
We use a maximum a posteriori (MAP) technique to estimate the
underlying model. This idealized statistical model takes into
account some major sources of copy number variation in an
irregular genome and is described by two scalar parameters 0 �
pr, pb � 1.

We assume that there is a copy-number distribution for probes
at locations that have not been affected by the chromosomal
aberrations associated with cancer. We call these probes regular
probes. We also assume that the probability for a particular
probe being regular is pr and that the associated regular copy-
number distribution, after log transformation, is Gaussian, with
mean �r and standard deviation �r. For the other probes, which
we call deviated, the log-transformed copy-number distributions
also are assumed to be Gaussian, with unknown mean and
standard deviation, distinct from the regular distribution. There
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are usually many sets of probes drawn from different deviated
distributions.

We also assume that there are locations in the genome that are
particularly susceptible to amplification (also known as dupli-
cation) and deletion events. These aberrations change the copy
numbers of probes locally. We model the number of such
mutations as a Poisson process with parameter pbN, where N is
the length of the genome (i.e., total number of probes).

We subdivide the probes along the genome into k nonover-
lapping intervals. Probes belonging to a particular interval are
assumed to have a similar evolutionary history of duplication and
deletion events, and therefore have similar copy-number distri-
butions. The number of intervals into which the probes can be
separated represents the progressive degeneration of a cancer
cell line. We do not model single nucleotide polymorphisms and
other point-mutation events, and this undermodeling reappears
as localized noise in our analyzed data.

In our picture, each interval in this subdivision has a ‘‘true’’
copy number. Our goal is to estimate the correct subdivision and
the copy numbers associated with each subinterval. Despite its
simplicity, our model can serve as the basis of a statistical
algorithm to infer the aberrations without overfitting the data.

More formally, given a set of N probe copy-number values
arranged on the genome, we assume that there is an unknown
partition of this set into nonoverlapping subintervals. The probe
copy number values in the jth interval are assumed to arise as
independent samples from a Gaussian distribution N(�j, �j).
The parameters relating to the jth interval can be represented as
the tuple Ij � (�j, ij, �j), where �j and �j are the mean and
standard deviation of the appropriate Gaussian distribution and
ij is the position of the last probe in the interval. We call such a
set of intervals I � {Ij�j � 1, . . . , k} an interval structure. When
a particular interval in I is regular, its mean is the regular mean
�r. If an interval Ij is deviated, then its population mean �j is
unknown and is estimated by using the sample mean over the
interval. In this work, we assume that all of the �j terms are equal
to some common value �, and we therefore omit them from the
notation. We denote an interval structure IN with k intervals and
whose intervals have associated means �1, . . . , �k and endpoints
i1, . . . , ik (necessarily ik � N) as �i1, �1, i2, �2, . . . , ik, �k�.

Our goal is to estimate the unknown interval structure IN from
an input sequence {vi, i � 1. . . N} of copy numbers of N
successive probes.

The statistical model described thus far fits naturally into a
Bayesian setting. We can start with a prior distribution on the set
of interval structures depending only on the number of intervals
and the number of regular probes with two scalar parameters pr

and pb whose significance is described above.
This prior has two components, the first a Poisson distribution

to model the number of intervals with Poisson parameter pbN.
The second component is a sequence of Bernoulli trials, one for
each probe with probability pr that a given probe is regular.
Combining these factors, the prior distribution becomes

Pr�IN� � e�pbN
� pbN�k

k!
pr

#regular�1 � pr�
#deviated [1]

where #regular is the number of regular probes with the ‘‘reg-
ular’’ copy-number distribution and #deviated is the number of
remaining probes in the interval structure IN. In each interval Ij,
the data points are modeled by adding independent Gaussian
noise to this prior structure and are drawn from the Gaussian
distribution N(�j, �).

The data likelihood function for the first n probes is given by
the product of Gaussians:

Pr�x� IN� � �
i�1

n

��xi , � j , �2� [2]

where the ith probe is covered by the jth interval of the interval
structure IN and �j is the mean of the corresponding Gaussian
distribution. � denotes the density function of the Gaussian
distribution. By multiplication, we obtain the posterior likeli-
hood function:

L�IN�x� � e�pbN
� pbN�k

k!
pr

#regular

��1 � pr�
#deviated��

i�1

n

��xi , � j , �2� . [3]

In the above expression for L, only the � values of nonregular
processes are unknown, and we estimate these values by using the
sample mean for the interval. The MAP solution to the seg-
mentation problem is obtained by finding the interval structure
I* that maximizes this likelihood function or, equivalently,
minimizes the negative log likelihood of L.

Algorithm and Implementation
A dynamic programming algorithm efficiently minimizes the
negative posterior log likelihood function obtained above. Start-
ing with an interval structure I � �i1, �1, . . . , ik, �k�, we can
extend it to the interval structure I� � �i1, �1, . . . , ik	1, �k	1�,
where ik	1 
 ik. The following formula computes the log
likelihood for such an extension

�log L�I�� � �log L�I� �
1

2�2 �
j�ik	1

ik	1

�xj � �k	1�
2

� log�pbN� � log�k � 1�

�
ik	1 � ik

2
log�2��2� � � ik	1 � ik�

� ��k�regular log pr � �k�deviated log�1 � pr��

[4]

where the last term on the right side is chosen according to
whether the last added interval (i.e., the one extending from
ik 	 1 to ik	1) is regular or not. � � 1 if the Boolean formula e
is true, and 0 otherwise. We also point out that the MAP
approach permits the estimation of the � terms in a uniform
manner. When the last added interval is regular, the value �k	1
is fixed at the global mean �. When the last added interval is
deviated, however, the MAP criterion automatically forces the
choice of the sample mean of the data points covered by the last
interval as the value for �k	1. One could build hierarchical
models for the mean and use these ‘‘shrinkage-like’’ estimators
as well (3), although we do not explore that approach here.

The negative log likelihood function satisfies an optimality
condition that allows one to use a standard dynamic program-
ming algorithm [of time-complexity O(N2)] in this setting.

Results
We evaluate the performance of this simple Bayesian scheme on
three kinds of data. For each of these data sets, we will see that
proper choice of the parameter values pr and pb leads to good
segmentation. Indeed, coefficients chosen from within a fairly
large region of the ‘‘pr-pb space’’ lead to a good segmentation
because our procedure is stable over a large domain. The
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parameters pb, pr, �, and � play different roles: an increase in pb
yields more intervals in the segmentation, and, as pr is increased,
more probes come to be classified as regular, and therefore the
number of different segments diminish.

The choice of � is critical because it controls the bias in the
resulting segmentation. The choice of � is also important
because increasing � weakens the influence of the data on the
segmentation obtained.

Representational Oligonucleotide Microarray Analysis (ROMA) Data
from Breast Cancer Cell Lines. ROMA is a comparative genomic
hybridization (CGH) technique developed by Wigler and col-
leagues (1) at Cold Spring Harbor Laboratory. It evolved from
an earlier method, representational differential analysis, which
was adapted for greatly increased volumes of data obtained by
using an oligonucleotide microarray. ROMA uses a comparative
‘‘two-color’’ scheme to compare multiple genomes, each repre-
sented with reduced complexity by using a PCR-based method
(4, 5). As in other array-based methods, ROMA performs
simultaneous array hybridization to compare a normal genome
at one fluorescent wavelength and a tumor genome at another.
The DNA representations used by ROMA are based on ampli-
fication of short restriction endonuclease fragments and hence
are predictable from the nucleotide sequence of the genome. We
have tested our algorithm on the data sets from the Wigler
laboratory obtained by ROMA from the genomes of breast
cancer cell lines. The data set is based on 85,000 well charac-
terized probes, each of length 70 bp, providing a resolution of a
probe every 15–30 kb.

Figs. 1 and 2 show subsampled ROMA breast cancer data
from chromosomes 2 and 8, respectively, overlaid with the
segmentation found by our algorithm. The low-complexity DNA
representation used in ROMA, together with a careful choice of
probes, provides low-noise data that can be characterized accu-
rately by the algorithm.

Array-Based CGH (arrayCGH) Data from Prostate Cancer Cell Lines.
arrayCGH is a recently developed technique that maps dupli-
cated or deleted chromosomal segments onto high-density arrays
of well characterized bacterial artificial chromosomes (BACs),
rather than onto metaphase chromosomes. This method has
been used for precise mapping of duplications and deletions
occurring in cancers and other human diseases, including birth

defects and mental retardation (see ref. 6 for review and
applications of this technique). Tumors that have been studied
by using this method are breast, head and neck, Wilms, esoph-
ageal, pulmonary artery intimal, adrenocortical, renal, and
prostate cancers and lymphomas. We have tested our algorithm
on a data set obtained by high-resolution arrayCGH analysis of
prostate cancer tissue. The data were supplied by a group at
Nijmegen University Medical Center and obtained by hybrid-
ization on their custom array composed of 3,500 fluorescence
in situ hybridization-verified clones selected to cover the genome
with an average of one clone per megabase (7).

Fig. 3 shows the performance of our segmentation algorithm
on data from prostate cancer cell lines obtained through array-
CGH experiments. We note that these data are noisier than the
ROMA data considered previously. But, despite the increased
noise, the segmentation algorithm is robust and yields reason-
able segmentations.

Fig. 1. Segmented probes on chromosome 2, pr � 0.55, pb � 0.005, sampling
rate 1 in 10. Fig. 2. Segmented probes on chromosome 8, pr � 0.55, pb � 0.01, sampling

rate 1 in 10.

Fig. 3. Segmented probes on array-based CGH data. Chromosome 8, pr �
0.55, pb � 0.01, sampling rate 1 in 10.
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Simulated Data. To further test our algorithm, we can use an
artificial but biologically inspired model to generate synthetic
data. To generate simulated copy-number data, we choose loci
uniformly over a genome such that the probability of a dupli-
cation or deletion event taking place at that location on the
genome is given by pb. At each of these points, we assign a new
copy-number value that represents the mean for the new inter-
val. The mean values are drawn from a power–transformed 	
distribution to mimic the observed distribution of means in
experimental data. The lengths of the intervals follow a geo-
metric distribution such that the ratio of expected fragment
length and the expected distance between the beginning of each
interval is pr. Once the segmentation and the mean values are
chosen, we generate the simulated data by adding random
Gaussian noise. A typical simulated genome is shown in Fig. 4.

Effect of Noise on Performance. We investigate the effect of
increasing the � of the underlying model on the performance of
the segmenter. Assuming the parameters of the model are
correctly estimated, the segmenter can output the estimated
mean value at every probe position. Using the known mean
values, we can compare these two sequences of means. In our
setting, a good measure of error is the number of misclassified
probes, i.e., the number of probes that are known to be regular
but were classified as amplified or deleted and vice versa. Fig. 5
shows the increase in the rate of misclassification as � increases.

Prior Selection
Proper selection of a prior distribution has received extensive
attention in the literature. Approaches include noninformative
priors [Jeffreys (8)], reference priors [Bernardo (9); see also

Berger and Bernardo (10) and Kass and Wasserman (11)], and
conjugate priors [Raiffa and Schlaifer (12)] among others.
Conjugate prior methods frequently arise in connection with
exponential families of distributions [see Brown (13)]. Other
approaches include using invariance properties to posit prior
distributions with good performance. More recent and some-
what more data-dependent techniques include hierarchical and
empirical Bayes techniques. Textbooks such as those by Ber-
nardo and Smith (14), Berger (15), Carlin and Louis (16),
Gelman et al. (17), and Robert (18) cover model selection as a
part of Bayesian learning.

For the problem of estimating probe copy numbers, the prior
distribution is specified by the two probability parameters, pr

and pb. The other parameters (�, the regular mean, and �2, the
regular variance) can be estimated by experiment. The prob-
lem of prior selection reduces to the problem of optimally
selecting the values of pr and pb to prevent overfitting of the
data.

Minimax approaches choose prior distributions that mini-
mize the maximum value of the likelihood function (Eq. 4).
This criterion is pessimistic, in that it chooses the prior that
generates the worst likelihood value. See, for example, Berger
(15), Brown (19–21), and Strawderman (22–24). In the non-
parametric setting of function estimation, multiscale methods
have been proven to be asymptotically minimax by Donoho
and Johnstone (25–27).

We adapt an approach, based on statistical decision theory,
that directly controls the level of overfitting without explicitly
depending on the asymptotic performance guarantees of mini-
max approaches. We rely on the fact that, in any segmentation,
each jump separates the probes in the two adjoining intervals. If
a segmentation is overfitted, at least one of its jumps must be
overfitted, too. We use Hotelling’s t2 statistic [see Anderson (28)
or Wilks (29)] at each jump to compute a measure of this
overfitting.

We apply an F test to Hotelling’s t2 statistic to test whether two
sets of independent samples come from populations with the
same mean. This F test is possible because we assume that the
two sets of samples have the same (but still unknown) variance.
Let x1, x2, . . . , xN1

and y1, y2, . . . , yN2
be the two sets of

independent samples taken from successive intervals of size N1

and N2, respectively. Then, we define the statistic:

Fig. 4. A simulated genome with � � 0.0 and � � 0.15 and the corresponding
segmentation.

Fig. 5. Average number of misclassified probes plotted against increasing �

on synthetic data. The average number of misclassified probes in 
100 trials
is normalized against the length of the simulated genome.
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t2 �

N1N2

�N1 � N2�
�x� � y��2

1
df1 � df2

��i�xi � x��2 � �j�yj � y��2�

[5]

where x̄ and ȳ are the respective sample means, and df1 and df2
refer to the respective degrees of freedom of the two samples.
Under the null hypothesis (of equal means), t2 follows an F
distribution with 1, (df1 	 df2) degrees of freedom. This leads to
a one-tailed F test.

Intuitively, t2 needs to be large to avoid overfitting. The cumu-
lative probability for the appropriate F distribution yields a score
that determines the quality of the break. We also compute a score
for the goodness of fit for the whole segmentation. This procedure
yields a set of scores: one for each break and one for the goodness
of fit. The minimum of these scores is used to evaluate the whole
segmentation. We select the parameters pr and pb to maximize this
score by searching at regular intervals over the parameter space. We
can continue to refine the search in the neighborhood of the optimal
values obtained. However, the algorithm is already extremely stable
in a large region of the pr-pb space and yields, in practice, very good
segmentations.

Discussion
The problem of detecting copy-number variations has assumed
biological importance in recent years. Most extant algorithms
use a global thresholding approach for this problem. This is the
case, for example, in Vissers et al. (7) as well as many
commercially available packages. These algorithms have the
advantage of simplicity but perform poorly in the presence of
noise and correlations. Other published approaches have used
smoothing (30), hidden Markov models (HMMs) (31, 32), and
mixtures of Gaussians, as well as approaches that try to
estimate the correlations between probes (33, 34). Although
smoothing certainly improves the performance of threshold-
based approaches, the specifics remain somewhat ad hoc, and
the method requires tuning dependent on the source and
resolution of the data.

HMMs have the advantage of having a general (although slow)
learning algorithm; however, their performance is very sensitive to
the topology of the HMM. For this reason, researchers tend to
analyze very narrow classes of data with a particular HMM, e.g., a
prostate cancer cell line. Very rarely are normal-normal data so
analyzed, because this analysis usually necessitates the construction
of an HMM with a different topology, leading to questions about
the comparative power of such analyses. The main problem with
both this approach and others based on assuming a distributional
form for cancerous data is that the cancerous insertion-deletion
polymorphisms are characterized by being nonnormal, rather than
belonging to a specific distributional form. Therefore, fitting cancer
data leads to the construction of a specific HMM topology that
might depend on the specific cancer as well as the goodness of fit
desired by the statistician.

Olshen and Venkatraman (35) have advocated another ap-
proach based on recursive change-point detection in the copy
number data. The existence of a large literature on change-point
analysis makes this approach attractive. Conversely, an efficient
implementation of this algorithm is difficult. The specific sta-
tistic chosen for change-point detection in this and other work of

the group perform poorly on normal-normal data due to overly
pessimistic criteria. In some sense, our approach of putting a
Bayesian prior on the number of change points enables us to be
aggressive about detecting change points.

We have devised a versatile MAP estimator algorithm to
analyze arrayCGH data. This algorithm uses a model that
captures the genomic amplification-deletion processes but is
relatively insensitive to additive noise in the data. When the
algorithm was tested on a wide variety of data from ROMA- and
arrayCGH-based methods, this particular feature of the algo-
rithm provided strength and robustness. We note that the correct
choice of pr and pb is critical in the segmentation algorithm. High
values of pb tend to yield overfitted solutions, whereas high
values of pr drive us toward biased solutions that mark all
segments as regular. The advantage of having an algorithm with
only two numerical parameters is that a simple and natural
statistical criterion enables the proper choice of these parame-
ters in all cases.

We parenthetically note that our approach extends to multi-
dimensional data mutatis mutandis. The relevant likelihood
function needs to be changed to the following

L��i1 , �1 , i2 , �2 , . . . , ik , �k��

� e�pbN
�pbN�k

k!
1

�2�����n/2

��
i�1

n

e��xi��j����1�xi��j�/2�pr
#regular�1 � pr�

#deviated. [6]

The t2 statistic can be modified similarly.
Prior work by Donoho and colleagues (36–38) on detecting

geometrical features in point clouds by using multiresolution
methods relates to the ideas presented here. These papers
focus on the use of multiresolution approaches for efficiency
and statistical stability. There is also prior work by Kolaczyk
(see ref. 39, for example) that gives a unified Bayesian
treatment to multiresolution analysis and covers large classes
of both continuous as well as discrete processes. Our approach
leads to an efficient algorithm for sequence-like data, which
can be used in a multiscale setting if desired. Furthermore, in
our approach, the probabilistic generative model directly leads
to the cost function; thus, other generative models, e.g.,
poisson models, can be easily considered in this setting. It
should be noted that the Hotelling’s t2 statistic cannot be easily
generalized to this setting.
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