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ABSTRACT

Measuring minimal residual disease in cancer has
applications for prognosis, monitoring treatment
and detection of recurrence. Simple sequence-based
methods to detect nucleotide substitution variants
have error rates (about 10−3) that limit sensitive de-
tection. We developed and characterized the perfor-
mance of MASQ (multiplex accurate sensitive quanti-
tation), a method with an error rate below 10−6. MASQ
counts variant templates accurately in the presence
of millions of host genomes by using tags to identify
each template and demanding consensus over mul-
tiple reads. Since the MASQ protocol multiplexes 50
target loci, we can both integrate signal from multi-
ple variants and capture subclonal response to treat-
ment. Compared to existing methods for variant de-
tection, MASQ achieves an excellent combination of
sensitivity, specificity and yield. We tested MASQ in a
pilot study in acute myeloid leukemia (AML) patients
who entered complete remission. We detect leukemic
variants in the blood and bone marrow samples of all
five patients, after induction therapy, at levels rang-
ing from 10−2 to nearly 10−6. We observe evidence
of sub-clonal structure and find higher target variant
frequencies in patients who go on to relapse, demon-
strating the potential for MASQ to quantify residual
disease in AML.

INTRODUCTION

Accurate counting of nucleic acid templates is often criti-
cal for assessing biological phenomena, in particular when
measuring the amount of a non-host genome. When the

non-host genome is a pathogen whose genomic sequence is
vastly different from the host genome, many methods are
available, almost all based on polymerase chain reaction
(PCR). However, when measuring minimal residual disease
(MRD) for malignancies, the typical cancer genome dif-
fers from the host germline genome in only a few positions.
This similarity presents formidable problems for detection
and quantitation of variants. Because of sequence errors
and amplification biases, PCR alone is insufficient for ac-
curately detecting or quantifying rare variants. However,
performance can be improved by coupling PCR to an ad-
ditional ‘protocol’ such as limiting dilution, the counting of
PCR cycles, or counting the number of different tags added
to initial templates (1–3).

Current approaches for detecting and measuring MRD
include multi-parametric flow cytometry (4–6), FISH (7),
PCR detection of fusion transcripts (8,9) and targeted se-
quencing of common mutations (10–16). Each of these
methods have their utility, but many are limited in their sen-
sitivity, specificity and/or applicability to all patients. Im-
proving the measurement of MRD in cancer should lead
to better informed treatment decisions. In this paper, we
present and demonstrate a protocol and analysis pipeline
for multiplex accurate sensitive quantitation (MASQ), a
method that can accurately count single nucleotide variants
(SNVs) at many positions against a background of millions
of host genomes.

We developed the MASQ protocol to satisfy six impor-
tant properties. First, the method is quantitative, achieved
by adding a unique sequence tag to the initial templates,
which results in an accurate count not distorted by am-
plification. Second, it has a low error rate, below 10−6,
achieved by demanding multiple read consensus for each
template tag, thus removing or correcting amplification
and sequencing-platform error. Utilization of a proofread-
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ing polymerase also reduces error generated during PCR.
Third, MASQ enriches for target loci, which facilitates the
use of a large amount of input material. This is necessary
to examine millions of templates per locus and achieve high
sensitivity. Fourth, it can assay many loci simultaneously, on
the same starting material, which increases both the sensi-
tivity and specificity in detecting low levels of residual dis-
ease. This approach also makes maximal use of valuable pa-
tient samples. Fifth, the method achieves a high yield, uni-
form across all loci, by performing many rounds of linear
amplification prior to exponential amplification. Sixth, it
enables an empirical error model, based on the error counts
at non-target control positions, thus improving the accu-
racy of target variant frequency estimates by correcting for
remaining error, and reducing false positives by providing
accurate detection thresholds.

The last few years have seen an influx of new proto-
cols and informatics that use next generation sequencing
to detect rare variants (17). These methods satisfy some of
these desirable qualities but not others (Supplementary Ta-
ble S1). Duplex sequencing (18) and Illumina TruSight kits
use tagged primers to achieve accurate quantitation and low
error rates. However, both methods use capture hybridiza-
tion to enrich for target loci, which imposes a restrictive
limit on the amount of input DNA and also suffers from
poor yield. Other methods modify the standard PCR pro-
tocol and/or informatics to obtain error rates of ∼10−4

(19–23), however these methods are quantitatively impre-
cise at variant allele frequencies below 1:5000. In contrast,
the MASQ protocol and informatics satisfy the full range of
desirable qualities. To establish this, we performed a set of
tests to demonstrate the performance characteristics of the
MASQ protocol while varying a range of conditions such as
template concentration, DNA volume and number of loci
queried.

We also demonstrate a use case for MASQ in five pa-
tients with acute myeloid leukemia (AML), measuring the
proportion of leukemic cells present in the blood and bone
marrow at presentation, during clinical remission and at re-
lapse. We use whole genome sequencing (WGS) to identify
hundreds of patient-specific variants, selecting ∼30 per pa-
tient to target with MASQ. Having hundreds of variants
to choose from allows us to select for those with advanta-
geous error profiles while broadly sampling clonal tumor
heterogeneity. Our results support previous observations
that although a patient is in cytological remission, with no
detectable leukemic blasts, the patient still has measurable
MRD, and that levels of such may be a predictor of long
term response (13–14,24–29). We observe clustering of vari-
ant frequencies following treatment, which may prove criti-
cal in understanding and predicting relapse (30,31).

MATERIALS AND METHODS

The MASQ method depends on the interaction of bench
protocols and informatics. We first apply a set of compu-
tational algorithms to identify patient-specific SNV target
variants where the tumor genome differs from the normal
genome. We select from those SNVs a set of target loci
that satisfy constraints about fragment length, mutation
context, sequence uniqueness and proximity to a restric-

tion enzyme cut-site. A final algorithm identifies a set of
compatible restriction enzymes and designs patient-specific
primer sequences. The bench protocol uses those restric-
tion enzymes and sequence primers to generate a sequence
library where most sequence reads cover the targeted loci
and where each target read has a sequence tag that uniquely
identifies its originating molecule. A second informatics
pipeline analyses the read data, collecting reads from the
same locus, identifying reads from the same initial molecule
and correcting sequencing errors by consensus where pos-
sible. Counting the SNVs observed after error correction
provides an accurate quantitative measure of the tumor
genome while counting variants observed at neighboring
positions in the locus inform our models for sequence error.
These error profiles feed back into the locus selection pro-
cedure and are important in the statistical interpretation of
counts at the target positions.

Identifying target variants

To identify tumor-specific SNVs, we compare whole
genome sequence data from the tumor with that of a paired
normal DNA sample. For the five AML patients, we used
the remission blood sample as the normal tissue. To iden-
tify tumor-specific sequence variants, we used a custom
software pipeline detailed in the Supplementary Methods.
Based on our analyses (see ‘Results’ section), not all vari-
ant sites are equally good candidates for error correction.
Moreover, in order to multiplex, a batch of target variants
must share a compatible set of restriction endonucleases
(REs) and primer sites (see Figure 1). We developed an al-
gorithm that, given a list of candidate variants from the tu-
mor genome, finds a large set of target loci that satisfy pro-
tocol and error optimization requirements (Supplementary
Methods and Figure S1). Several hundred candidate tar-
get variants were available for each of five AML samples in
our study. From these hundreds of candidate variants, 25–
30 compatible target variants per patient were chosen for
MASQ. To demonstrate the efficiency of primer design, we
simulated target variant selection given different numbers
of input SNVs (Supplementary Figure S2).

MASQ bench protocol

The bench procedure is illustrated in Figure 1. The proto-
col steps are performed in multiplex mode for a compati-
ble batch of target loci and REs. In step 1, input DNA is
cleaved with a set of REs near the target variants (vertical
red hash). The cleavage sites serve in steps 2–3 as the entry
point to ‘guided elongation’, which is the method utilized
to add a ‘varietal tag’ sequence (VT) and a universal primer
sequence (UP) to each of the original target templates. A
varietal tag is one from a diverse set of random sequences
that when added to its target sequence renders an effec-
tively unique combination of nucleotides (also known as
unique molecular identifier, UMI) (1). Guided elongation
consists of hybridizing a ‘guide’ oligonucleotide to a spe-
cific template so it can be elongated at the cut site. In steps
4–5, multiple copies of the elongated target locus are gen-
erated by linear amplification using a biotinylated primer.
The biotin permits the enrichment of linear copies of the
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Figure 1. MASQ Protocol. (A) In step 1, genomic input DNA (gray and blue lines) is cleaved with a set of REs near the target variants (vertical red hash).
The cleavage sites serve in steps 2–3 as the entry point to ‘guided elongation’, which is the method by which a ‘varietal tag’ sequence (VT) and a universal
primer sequence (UP) is added to a specific strand (blue) of the target locus using the target-specific primer A (green) with a blocked 3′ end that cannot be
extended. These, and all the following steps, are performed in multiplex mode for a compatible batch of targets and REs. In steps 4–5, multiple copies of
the elongated target locus are generated by linear amplification using a biotinylated primer. The biotin is used to enrich linear copies of the targets (step
6). Exponential PCR uses the universal primer and a target specific primer for each locus (step 7). Sequencing libraries are prepared from PCR products
using standard methods (step 8). (B) Target variants chosen from all candidates must have the allowed distance to the enzyme cut site and specified range
for amplicon length, as specified in the figure.

targets by capture with streptavidin beads (step 6). Expo-
nential PCR is carried out using the universal primer and
a target-specific primer for each locus (step 7). Sequencing
libraries are prepared from PCR products (step 8). Further
details are found in the Supplementary Methods and primer
sequences are listed in Supplementary Table S2.

MASQ informatics protocol

Sequencing reads are processed through the following com-
putational pipeline as illustrated in Supplementary Figure
S3: Reads from a single assay are each assigned to one of the
multiplexed target loci. Replicate reads with the same tem-
plate varietal tag are aggregated. The number of reads per

template (RPT) is tabulated. A consensus rule is applied to
call a base at each position of the template, both at target
and control positions. The consensus base is either the ex-
pected host base or one of the three possible variant bases.
The consensus rule applies when the RPT > 1. In practice,
we restrict our attention to templates with RPT ≥ 2. A con-
sensus base is called if 80% of the replicate reads agree at
that template position, otherwise we make no base call, thus
resulting in both the removal and correction of errors. At
each position, the number of consensus bases correspond-
ing to each of the four possible bases is counted. At con-
trol positions, we assume that variant base observations are
the result or error and so we calculate empirical error rates
for each of the variant bases. This error rate is the number
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of consensus variant bases at that position divided by the
total number of templates with consensus calls at that po-
sition. Template positions are further grouped by their 64
trinucleotide sequence contexts. Target surrogates are de-
fined as the control positions in the templates that match
the trinucleotide context of the target variant. The relevant
surrogate error rates are used to adjust the counts of each
target variant, considering that a portion of the count may
be derived from error. Surrogate error rates are also used
to assess whether the aggregate count at the target variant
exceeds that possible by error.

Modeling noise and estimating frequency by surrogate sam-
pling

Statistical methods are required to evaluate whether a can-
cer genome is present in a sample, and if so, to estimate its
proportion relative to the host germline genome. We per-
form these tasks for a single target variant by sampling ‘er-
ror’ from all its surrogate positions. Additionally, we extend
this method to aggregate signal over multiple target posi-
tions.

Despite low error rates on the order of 10−6, when se-
quencing hundreds of thousands of templates per locus,
variant bases will still be observed, albeit infrequently, at
control positions. These originate either from low-level pre-
existing somatic mutation, or from events arising during
any of the steps leading to library preparation and the fi-
nal sequence acquisition. Regardless of origin, we call these
‘background error’ or just ‘error’. We infer the error rate at
the target positions from the error rate at surrogate posi-
tions, i.e. control positions with the same trinucleotide con-
text as target positions. Typically, any given assay has suffi-
cient surrogate positions to determine the background error
rate for each context. Because error rates for surrogate posi-
tions match well from assay to assay (Supplementary Table
S3), there is an option to derive this error estimation from
other assays. However, in this report, we only utilize surro-
gates from within the same assay.

For each target variant, over many iterations, we ran-
domly sample from the background error rates of the surro-
gate positions. This allows us to estimate what proportion
of the target variant count likely derived from error. By sub-
tracting the estimated error count from the observed target
count, we obtain an adjusted target count. We assume the
adjusted count is drawn from a binomial distribution, and
use that to estimate the frequency distribution. We perform
multiple independent samplings and average the resulting
distributions. The mean and 90% confidence interval are ob-
tained from this distribution (see Supplementary Methods
for details).

RESULTS

Not all mutations are equally easy to measure since some se-
quence contexts will generate a higher rate of background
error than others. Using information from control posi-
tions, we determine that the major factors influencing back-
ground error are the sequence context (flanking nucleotides)
and the specific base change. Determining background er-
ror rates as a function of context is important for select-
ing variants with desirable error profiles. We then explore

the key performance characteristics of the MASQ protocol:
proportion of reads on target, uniformity of coverage and
accuracy of measurement. We test these parameters while
varying the number of loci tested, the amount of input DNA
and the proportion of variant genome. We demonstrate the
performative advantage of MASQ over standard methods,
comparing to a standard PCR library and to the MASQ
data without tag counts and error correction. In the last sec-
tion, we apply these methods to a small illustrative study in
AML.

Mutational context

To determine the error rate characteristics of MASQ, we
performed eight separate assays that differed in target loci,
DNA source and depth of coverage. Both RPT and trin-
ucleotide sequence context contribute to variation in error
rate. Figure 2A shows the error rate as a function of RPT
from each of these eight assays. The curve in red repre-
sents average error rate across all assays and all positions.
Templates with only one read have an overall error rate of
10−3. By demanding consistency in the sequence of multi-
ple reads from the same template, much lower error rates
can be observed. In principle, with multiple first round lin-
ear copies, followed by highly redundant sequencing of each
linear copy, all errors could be eliminated except those aris-
ing from template damage or from consistent machine error.
Error rates drop as RPT increases, averaging to below 10−5

for positions in templates with at least two reads (Figure
2A, right side). Considerably better error rates are achieved
at positions with preferred nucleotide contexts, as next dis-
cussed.

Analyzing 64 different trinucleotide contexts with three
central base substitutions results in 192 distinct error rates;
all are plotted in Figure 2B and summarized over eight as-
says in Figure 2C. The 192 individual rates from each assay,
with a 2 RPT cut-off, are found in Supplementary Table S3.
Error rates vary over three orders of magnitude, and more
than half of the 192 variant possibilities have error rates
<10−6. The primary determinant of the rate is the central
nucleotide substitution, which is color-coded in Figure 2B.
For example, G to T variants, in any trinucleotide context,
have high error rates. This may reflect spontaneous depuri-
nation of G in the template (32). Many DNA polymerases
insert an A when confronted with an apurinic site, resulting
in a G to T conversion. Some surrounding contexts matter,
as exemplified by a high error rate (10−4) for CG to TG,
whereas CA to TA has a lower error rate (10−5). This may
reflect the spontaneous deamination of 5-OH-methyl-C to
T occurring in vitro (33). The strand-specific nature of the
CpG errors was confirmed by targeting each strand inde-
pendently (Supplementary Figure S4). This error rate anal-
ysis by trinucleotide context enables one to choose more re-
liable variants to assess (Figure 2D), and also improves sta-
tistical modeling.

Analytic sensitivity by serial dilution and surrogate sampling

We assess the analytical sensitivity of MASQ and illus-
trate the surrogate sampling method (see ‘Materials and
Methods’ section) using a set of 10-fold serial dilution as-
says of one sample spiked into another (1 in 102 to 1 in
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Y-axis. Each line represents one of eight assays (set A and set C, as described in ‘Performance’ section). The red line indicates the error rates when all assays
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105). Twenty heterozygous variants, present in the spiked-
in genome (LCL1) and absent in the host genome (SKN1),
are the target variants in these assays. These estimates are
shown for each variant in Figure 3A, and tabulated in Sup-
plementary Table S4. In the lowest dilution assay, single
variant estimates range from 2.4 × 10−6 to 2.5 × 10−5,
which in all but one instance exceeds the maximum error
rate from the surrogates. In 8 out of 20 variants the mini-

mum of the confidence interval is below the maximum error
rate from surrogates.

By taking an aggregate measure of signal over all vari-
ant positions we obtain much greater power. To do this we
use the same framework as described above for single vari-
ants (see Figure 3B). In each iteration, we randomly choose
a surrogate for each of the target variants, and sum their
sampled error counts into an aggregate score. The distribu-
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tion of these aggregate counts for the 1:105 dilution assay is
shown in Figure 3B and the left inset panel. We then com-
pare the aggregate count of the target variants to the distri-
bution of aggregate scores from the simulation. If the target
count is contained within the simulated values, we calculate
its P-value as the proportion of the distribution greater than
the target score. If the target score is outside the range, we
report the P-value limit and calculate the number of stan-
dard deviations, z, beyond the mean of the distribution. For
the final dilution, we obtain a P-value < 10−4 and z = 52.
Lastly, the aggregate estimate of the likely proportion is cal-
culated as for the single variants. This distribution is shown
in Figure 3B, right inset panel, and the mean estimate is in-
dicated by the colored lines in Figure 3A.

Performance

The performance of MASQ was evaluated on assays using
various amounts of input DNA and varying numbers of
targets. The performance criteria include: the yield of tem-
plates observed, the evenness of reads per locus and the ef-
ficiency of sequencing, namely, the proportion of all reads
from a library that match a template. Details on these per-
formance characteristics for each assay are summarized in
Supplementary Table S5. Figure 4 shows data from 12 as-
says. In four assays (set A) the number of multiplexed loci
varied from 20 to 50 using nested subsets of the 50 loci with
1.5 �g input. In four assays (set B) the amount of input
DNA varied from 14 to 175 ng for 20 fixed loci. Four assays
(set C) derive from the dilution assays previously discussed
(1.4 to 14 �g input, 20 loci).

Figure 4A shows that, in each of the 12 assays, nearly all
(80–90%) reads have the expected sequence structure and
map to one of the target loci. These reads map relatively
evenly to each of the target loci regardless of the number of
loci (Figure 4B, set A) or the amount of input DNA (Figure
4C, set B). The exception is some unevenness at the lowest
amount of DNA input, more as number of reads than as the
number of uniquely tagged templates. The uniquely tagged
template counts are even more tightly distributed than read
counts, regardless of number of loci (Figure 4D, set A) or
input DNA (Figure 4E, set B). The proportion of template
molecules recovered is nearly 50% when only 20 loci are ex-
amined at any input level (Figure 4E), dropping to half that
value when 50 loci are examined (Figure 4D).

Additionally, the distributions of RPT were analyzed as
a function of overall sequencing coverage. Supplementary
Figure S5 shows for each of the three sets of MASQ assays,
the proportion of tags with at least 2 reads as a function of
read depth (expressed as average RPT). Down-sampling of
existing datasets shows that with an average of 2 RPT, 53%
of the templates have at least 2 RPT and hence can be error
corrected. This proportion increases to 84% at an average
of 5 RPT and 93% at an average of 10 RPT.

Comparison to alternative methods

To assess the advantages of MASQ over other approaches,
we compared our results to standard multiplex PCR using
the same dilution assay approach. We performed PCR at
the three concentrations where the amount of input DNA

needed to observe the variant was within the acceptable pa-
rameters for PCR. We also re-analyzed the MASQ sequence
data ignoring varietal tag information. This foregoes er-
ror correction and template count and the resulting ‘no-tag
MASQ’ results closely mirror those of standard PCR.

We first note that multiplex PCR generates a similar pro-
portion of reads on target as MASQ (90–95%). However,
multiplex PCR lacks the first-strand target enrichment used
in MASQ and therefore the target reads are less uniformly
distributed by locus than in MASQ. For PCR, the coeffi-
cient of variation in coverage is 0.8 (compared to 0.2 for
MASQ) and the locus with the least coverage is at 3% of
the mean coverage (compared to 33% for MASQ, see Sup-
plementary Figure S6). Importantly, when measuring the
frequency of an allele, we find a dramatic reduction in ac-
curacy for a dilution in the range of 1 in 10 000 (Figure 4F),
consistent with literature on PCR (19–23). This results from
the background error rate increasing to an average of 10−4

per position. When we examine the MASQ data but ignore
tag information, we obtain a degradation of performance
similar to what we see with PCR, namely the loss in quan-
titative accuracy and high background error rates (see Fig-
ure 4F; Supplementary Figures S7–9). In both the standard
PCR and no-tag MASQ datasets, target variants start be-
coming difficult to distinguish from background error when
they are present below 1 in 1000 (Supplementary Figure S8);
and at frequencies of 1 in 10 000 and below, sensitivity and
specificity of standard multiplex PCR and no-tag MASQ
are dramatically worse than MASQ, which maintains a per-
fect sensitivity at 98% specificity for target variants present
at a frequency of 1 in 200 000 (Supplementary Figure S9).

Application: Minimal residual disease in AML

We have applied MASQ to the clinically relevant question
of measuring MRD in AML. In this pilot study, DNA from
five AML patients was assayed at three disease stages: pre-
sentation, remission and relapse (where applicable). The re-
mission sample was taken immediately after induction ther-
apy, but prior to consolidation therapy (34). All five patients
had a complete cytological response to induction therapy,
with 0–1% blast cells detected by cytological exam. Two pa-
tients relapsed <1 year after presentation (pt27 and pt17),
and expired shortly after relapse. One patient (pt49) re-
lapsed 2 years after presentation, followed by a second re-
mission and second relapse. The final two patients (pt12 and
pt57) remain in long term remission more than 8 years af-
ter initial diagnosis. A summary of these clinical landmarks
is shown in Figure 5A, and additional clinical information
is listed in Supplementary Table S6. DNA from presenta-
tion and relapse was isolated from peripheral blood or bone
marrow, depending on availability. DNA isolated from bone
marrow and from blood were both assayed for the remission
time point (Figure 5).

To measure MRD in each patient, target somatic variants
specific to each individual’s leukemic cells were identified.
Variants were selected by comparing WGS from presenta-
tion samples and ‘normal’ samples obtained at remission.
Leukemic variants were chosen from variants detectable via
WGS at presentation that were dramatically reduced in fre-
quency, or not detectable, in the remission WGS data (Sup-
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plementary Table S7). The WGS analysis resulted in 272 to
1118 candidate variants per patient, of which 4 to 14 were
in exonic regions, consistent with previous WGS studies of
AML (35,36). For the relapse cases, 92% (pt27) and 88%
(pt17) of variants detected at presentation in the WGS data
are present at relapse. Further selection of target variants
was based on rates of error for each trinucleotide substitu-
tion, as well as for compatibility with MASQ. Between 27
and 30 variants per individual were selected to multiplex in
one MASQ assay. These variant sites were first verified by
non-quantitative PCR on DNA from presentation and re-
mission. Quality control on MASQ data based on perfor-
mance metrics was used to eliminate a minority of poorly
performing loci from further analysis (24–30 loci per pa-
tient in final dataset). Overall performance (Supplementary
Table S5) and trinucleotide error rate profiles for the AML
remission datasets (Supplementary Figure S10) are highly
similar to those shown in Figures 2 and 4.

Frequency estimates of the leukemic target variants in
each AML sample are presented in Figure 5A (and in Sup-
plementary Table S8). Each dot represents a single target
variant, and the violin plot shows the overall density of as-
sayed variants for each sample. Two patients (pt27 and pt17)
were assayed at presentation, at remission and at relapse.
Three patients (pt49, pt12 and pt57) were assayed at pre-
sentation and at remission. We also tested two MASQ vari-
ant sets (from pt12 and pt57) on a negative control sample
(see ‘Materials and Methods’ section). As expected, the fre-
quencies reported in a negative control precisely reflect the
expectation from surrogate positions (Supplementary Fig-
ure S11).

At presentation and relapse, the target variant frequen-
cies are highest, and all but one of the frequencies fall
into the range of 0.20 to 0.48. In contrast, as expected af-
ter a complete response to induction therapy, target vari-
ant frequencies drop significantly and vary from 3 × 10−6

to 0.05. Of the 288 variants assayed in remission, 4 have
90% confidence intervals including zero. Furthermore, two
patients (pt12 and pt57) who achieved long-term remis-
sion (>8 years) have much lower overall variant frequen-
cies at remission than those patients who relapsed, consis-
tent with the belief that the extent of responsiveness to in-
duction therapy correlates positively with patient outcome.
Aggregate frequency estimates for each sample are also
shown.

Overall variant concentrations in blood and bone mar-
row, from the same remission time point, are highly similar,
with bone marrow concentrations slightly higher in four of
five cases. The rank order of the variants across source ma-
terial, as shown in Figure 5B, are nearly identical. These re-
sults attest to the near equivalence of blood and bone mar-
row and to the robustness of quantitation achieved in these
assays.

Not all variants are present at equal frequencies within
one sample. Figure 5B further examines the relationship
between variant frequencies at different disease stages by
sorting each patient’s variants by decreasing frequency in
blood during remission, maintaining the order across all
time points. As observed most clearly in remission, the
within-sample frequencies appear in all cases to cluster into
discrete groups rather than a continuous spread. In three

patients, this clustering is evident upon presentation or re-
lapse.

Typically, there is a major cluster in remission, repre-
sented by the largest number of variants at one frequency.
We present the aggregate estimates for these major clusters
in Supplementary Figure S12 and Table S8. In all remission
samples, there are variants more abundant than the major
cluster. We hypothesize that these patterns are explained by
residual phylogenetic lineages distinguished by nested sets
of variants on the path to leukemia that may respond dif-
ferently to the treatment regimen.

Importantly, in the relapse cases, all the variants assayed
with MASQ increased from remission to relapse, approach-
ing levels observed at presentation, suggesting the therapy
did not completely eradicate the leukemic blasts.

To further demonstrate the importance of the varietal
tags in MASQ for error correction and accurate quantita-
tion, we re-analyzed the MASQ AML data while ignoring
the tag information. The resulting variant frequencies, and
background error distributions, are shown in Supplemen-
tary Figures S13 and S14. Error rates rise from below 10−6

in MASQ to above 10−4 in the ‘no-tag MASQ’ data. For
patients 12 and 57, whose remission variant frequencies lie
largely at 10−4 and below, variants that are easily distin-
guished from background error in MASQ become nearly
indistinguishable from error in the absence of varietal tag
correction. Furthermore, the tight clustering of variant fre-
quencies in remission in patients 17, 12 and 57 is obscured
in the no-tag MASQ data.

DISCUSSION

The MASQ protocol is designed to assay multiple genomic
variants with great accuracy and at high depth of coverage
against a background of normal genomes. To detect a vari-
ant genome at very low frequency requires both (i) a low
error rate and (ii) observing a sufficient number of distinct
molecules. These constraints were the driving factors in the
development of the MASQ protocol. To obtain a low error
rate, we choose loci that have advantageous error proper-
ties, use varietal tags to correct sequencing error by tagging
the original template molecule and apply a rigorous error
model to derive accurate quantitation. To obtain high yield
over the target loci, we use linear amplification, enrich with
biotinylated primers and simultaneously assay multiple loci.
These properties make MASQ a useful assay for a variety
of possible applications. In addition to quantifying resid-
ual disease in AML, MASQ has applications in counting
circulating tumor cells in solid cancers, measuring tumor
fraction in cell-free DNA (cfDNA) from plasma and quan-
tifying tumor load in surgical margins. Outside of cancer
applications, MASQ could be applied to counting fetal cells
in maternal tissues or measuring low levels of mosaicism.

Measuring tumor load and heterogeneity

Our primary application for MASQ is the highly accurate
and sensitive measurement of tumor load in the cancer pa-
tient. For solid cancers, tumor load is primarily assessed
by imaging and for leukemia, by cytometry. As leukemia
is a cancer of the blood, and solid cancer DNA is at least
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sometimes found in blood (37–41,34), we chose to de-
tect sequence variants from the neoplasia against a large
background of host germline DNA in blood. If success-
ful, such a method could better inform treatment decisions.
For leukemia patients, if residual disease persists, additional
consolidation therapy including a bone marrow transplant
may be warranted to eradicate all disease.

To increase the robustness and sensitivity of our assays,
we chose to target many cancer variants. Despite the rel-
atively low rate of sequence variation in AML (35,36,42–
44), by opting for WGS we identified hundreds of variants
from which to choose targets. Testing multiple loci increases
the effective depth of the assay, increases robustness and
enables subclonal resolution. A single variant can generate
false positives because of spurious somatic variation or false
negatives if its loss is the result of clonal drift or subclonal
drug response. For MASQ, we chose to detect SNVs, by far
the most abundant variants in solid cancers and leukemias.
The selected SNVs were identified by WGS rather than tar-
geted gene panels or whole exome sequencing, where not
enough variants can be found (in our cases: 0–3 variants in
recurrently mutated genes, 4–14 variants in exonic regions
and 272–1118 variants per patient in the WGS data.) We
did not focus here on common ‘pathogenic’ AML variants,
although these could be included among the target variants
in future studies using MASQ. By selecting multiple target
variants from across the entire genome, we can integrate sig-
nal from multiple variants and at the same time capture the
diversity of subclonal response to treatment.

Protocol properties

To achieve reduced error sequencing, one strand of the tar-
get template is elongated with random tags prior to any am-
plification and sequencing. Identical tags distinguish which
reads derive from the same original template. After linear
and then exponential amplification many reads per tem-
plate are generated, and a template sequence is inferred
only when those identically tagged reads are in agreement
over a position. Following a thorough analysis of the error
rates of all variants and tri-nucleotide contexts, certain nu-
cleotide variant contexts are excluded, largely avoiding C or
G changing to T. Under these conditions, we achieve error
rates of 10−6 and below.

The MASQ method has several attractive properties:
each locus can be quantified accurately. The yield is robust;
about one third of the expected number of all input tem-
plates are observed. Multiplexing works well; both the num-
ber of reads per locus and the number of RPT are relatively
uniform. At least 50 loci can be measured simultaneously,
over a large range of input DNA amounts. Sequencing costs
constrain the number of multiplexed loci, although we have
not yet encountered an upper limit in terms of performance.
Robust performance permits statistical modeling over ag-
gregated data. Primer design is a bit complex, but we pro-
vide algorithms and code that yield suitable primers for the
great majority of candidate target variants.

Comparison to other methods

Previously, SNVs have been of limited utility for measur-
ing MRD because the error rates of PCR and sequencing

are too high, on the order 10−3. Recent approaches to read
filtering and variant selection reduce the error rates to the
range of 10−4 to 10−5 but suffer from imprecision when the
allele frequency falls below 1 part in 5000 (19). Duplex se-
quencing is a molecular tagging method that uses double-
stranded asymmetric primers to reach error rates as low as
10−9. The utility of this method in a targeted capture frame-
work, however, is constrained by low yield (<1%) and lim-
ited input (250 ng or ∼50 000 genomes) enabling a query of
∼500 genomes per reaction (18). In contrast, MASQ has er-
ror rates commensurate with its depth of coverage, capable
of querying 180 000 genomes in a single reaction (2 �g or
∼600 000 genomes with 25–30% yield.) Combined with the
power of simultaneously assaying multiple loci, MASQ pro-
vides a sensitivity and specificity that surpasses other error-
correcting genomic methods (19–23,45–47).

Limitations of MASQ

While the MASQ error rate of 10−6 is sufficient for sensitive
detection down to one part in a million, were we to sample
on the order of 108 template molecules, such as are present
in a 10 ml blood sample, lower error rates would be desir-
able. We attribute our sensitivity limit to two primary fac-
tors: template damage and early-round error while copying
templates.

We already avoid template damage by preferentially se-
lecting for target variants in particular sequence contexts.
For example, we avoid target variants such as C or G chang-
ing to a T, as these loci frequently encounter deamination or
depuration, leading to consistent errors upon copying. Sen-
sitivity might be improved by first destroying damaged tem-
plates enzymatically (48,49). Duplex sequencing, discussed
above, controls for template damage by copying from both
strands of the same original molecule (50). Unfortunately,
this approach is not easily incorporated into our method of
targeted amplification.

Early-round amplification error is another factor that
limits sensitivity. The clear evidence for this is that error is
reduced as we sequence more copies of the original template
(Figure 3A). Ideally, consensus rules should be applied only
to first round copies. MASQ uses multiple first rounds of
copying, but we cannot know whether identical tags for a
read derive from one or many first copies of the original
template. One approach that might address this issue is to
add a second varietal tag such that each first round copy
receives its own unique tag in addition to the common tem-
plate tag. This could improve consensus base calling and
reduce error rates.

Another approach for reducing error rates is to select
insertion-deletion or ‘indel’ variants. Analysis of indel er-
ror in MASQ data suggest that consensus error for small
deletions are <10−8 (Supplementary Table S9). Although
indels are about a tenth as abundant as SNVs, even in AML,
a neoplasia with a low mutation rate, we find hundreds of
candidate indels (see Supplementary Table S10).

There have been reports that cancer-specific mutations
from solid tumors are observable in the plasma component
of blood as cfDNA (37–41). Existing evidence suggests that
the fragment sizes for cfDNA are in the range of 120–200 bp
(51). While the MASQ fragments reported here range from
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100–300 bp, the same MASQ protocol can be applied to am-
plify variants in the shorter size range common to cfDNA.
This could broaden the utility of MASQ to measuring dis-
ease burden in solid cancers as well.

Application to AML

Detection of MRD has proven clinical utility for AML, as
a endpoint in chemotherapy trials, as a surrogate marker
for response and for detecting and predicting relapse (4,13–
14,24–27). We tested MASQ in a small pilot study, measur-
ing MRD in five patients who entered remission following
induction therapy. We detected leukemic variants in all five
patients while in remission, at levels ranging from 10−2 to
nearly 10−6. In the two patients that relapsed, virtually all
of the variants that we assayed increased in frequency upon
relapse. Nothing of statistical significance can be expected
in such a small study. Moreover, interpreting MRD is more
complicated than simply measuring the aggregate concen-
tration of leukemic variants (30–31,52–54), as we and oth-
ers observe evidence of subclonal variation in therapeutic
response. Nevertheless, we observe a trend correlating lev-
els of MRD and future relapse: for the aggregate signal, for
the main cluster of variant frequencies and for the minimum
variant frequencies.

The MASQ protocol performs as well on our patient
samples as it does in our controlled laboratory experiments,
with similar yields, alignment rates and proportion of reads
on-target (Supplementary Table S5). The trinucleotide con-
text error profiles are very similar (Supplementary Figure
S10). Quantitation from blood very closely matches bone
marrow, indicating that assaying variants in blood is likely
to suffice for detection of MRD (5,55). Although the latter
is slightly higher, the rank order of variant frequencies are
nearly identical. The quantitation is such that we observe
similar clustering of variant frequencies in blood and bone.
In fact, the clustering of frequencies is an interesting and
potentially useful feature of patient response.

Monitoring multiple leukemia-associated variants in an
MRD assay enables robustness to technical and biologi-
cal variation, increased sensitivity and accurate quantita-
tion of leukemic and pre-leukemic (56–58) subclones across
the course of treatment. With MASQ as a tool for MRD
monitoring in AML, future studies can explore the clini-
cal utility of this highly sensitive and quantitative assay to
monitor patients and improve patient outcome.
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