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INTRODUCTION
From any regular projection of a tame knot K it is possibie
to construct a Seifert surface, a 2-dimensional, orientable surface
which spans K [4].1 Any Seifert surface may be deformed into
a disc with handles, and from this structure oné cén construct the
Seifert matrix of the Seifert surface, V, which gives some information'
as to how the handles are twisted and entwined, When V'is nonsingular
the symmetric matrix V + V', where V' is the transpose of.V, represents
a quadratic form whose genus is an invariant of the knot type
‘of K [5]. V is now known to be equivalent to the Murasugi matrix M*.;
Lombardero programmed an effective procedure for calculating
the Murasugi matrix M* of a knot or link [4]. In the present paper
I develop some of the theory and background for a program that calculates
mmerical invariants of the genus of the quadratic form given by M* + M#!
The program has been written in Fortran IV for the IBM 360 mod 90
computer, and is designed to interface with Lombardero's program.

It should not be difficult to adapt the program to more general situations.

PRELIMINARY CONCEPTS

A qua&ratic form, £, in n variables over the ring R (assumed to be
commutative with identity) is an hamogenous polynomial of degree two
that‘can be written in the form

n n

f = SM SUM a, .x.X.
(1) | o 84 5%4%5

where 334 = ajitaRJ A quadratic form is called unary, binary, tefnary,

L4



etc. according as it is in one, two, three, etc. variables.

Let g be another form given by
m .
(2) g = SUM SUM b, .y.y..
i=1 j J

f and g are said to be equivalent over R, written £~g over R, when

a change of variables

m
(3} X, = ?EI\; tijyj
brings f to g and when (3) may be solved for the yj in terms of the X4
It is clearly necessary for m=n if fe~g, If f~gover R, f and g
Irepresent the same values.
The relation """ is clearly an equivalence relation, being
reflexive, symmetric and transitive,
If £ is = form in n variables and g is a form in m distinct

variables, as in (1)} and (2), f and g are said to be d15101nt. Their

disjoint union, £+ g, is the form in n#m variables

( n n mom
4) h = SUM SUM a, .X.X. +Eﬂh{SUWI) Y3V
i=1 j=1 13'1 o i=1 4= 3y

h is said to have the decomposition'h = £ + g. If £, i=1,2,..,N

is a sequence of disjoint forms, we use the covenient summation notation
N

(5) SM f.
* l
i=1

to denote the disjoint union of the f;, and the context shall indicate

when summation is to be taken to be disjoint.

There is a convenient translation of all these notions into the



algebra of matrices over R. To f we associate the n x n symmetric
matrix
(6) AU = ((ag3))
Henceforth we shall also refer to symmetric matrices over R as
quadratic forms over R. If X denotes the row matrix [xl,...,xn]
and X' its transpose, the formal product
(7 X'A(H)X = f.
A is equivalent to B, A~B, if there exists an invertible T such that
(8) _ TAT' = B,
T is invertible if and only if det(T) is a unit in R.

If A is an n x n symetric matrix and B an m x m symmetric

matrix, we represent the direct sum

tn . JAOL
(9) A+ B-= [; é].

If our ground ring R is 2, the integers, d(f) = det(A(f)) is
an invariant of f since T is invertible if and only if det(T) = + 1.
That is, d{ )} is an effectively calculable function defined on the
space of forms over the integers which attains identical values for

equivalent forms. Pictorially,

MZ) . d()
,

(z)/~ {)/; |

is a conmutative diagram, where }(Z) is the space of forms over Z.

(10)

We say that d( ) projects to d( )/~ defined on the space of

equivalence classes of forms (L(Z)/~ .



- RING HOMOMORPHISMS AND INDUCED MAPS

If ReR and I is an ideal of R, we have the diagram

(11) % 2 RPsR/T

which induces the maps

aw O aeLemBow

and ; .

(13). QE) e QR e D0 R/T /.

In other words, if f~g over R, i*(f)~i*(g) over R and p*(f)ap*(g)
over R/I.
When R = Z, we often wish to look at the case where R is
the field of real numbers, R, and I = (m), the ideal generated
by meZ., If f and g are two forms over Z,
(i) f~g overR, and
(ii) f~g over Z/(m) for every meZ,
then f and g are said to be of the same geﬁus, or semiequivalent,
which we write fv g.3 Although equivalence over Z implies semi-
equivalence, the converse does not hold, |
It is a simple application of the Chinese remainder theorem
that in order to establish (ii) we need only establish
(iiY) f~g over Z/(pw) for all prime p and all wzl.4
We shall show in the sequel that it suffices to establish

(11"} f~g over Z/(Piw(i)) for i=1,...,N kmere

N .
d(f) = PROD pi“'(l)‘l

i=1

and that a complete set of invariants exist for establishing equivalence



over the residue rings Z/ (pw) when p is an odd prime.
We shall assume in the remainder of this paper that (f) # 0.
For if d(f) = 0 we can decompose f into a disjoint union of a

nonsingular form with a zero form of the appropriate size.5

THE CONGRUENCE OF UNARY FORMS

As a first step towards developing a theory of the congruence
of quadratic forms over the rings Z/ (pw) we must investigate the
congruence properties of axz over Z/(p). Now, ax2~bx2 over Z/(p)
if and only if there is a t # 0 (mod p) such that atza b (mod p).
If such a t exists, a and b are said to belong to the same quadratic
residue class modulo p. The Legendre symbol (5) will be of use
here; it is :defined for all odd primes on the multiplicative group

z/(p)* as follows:

(%) = +] if tzea (mod p) is solvable; that is, if a
is a perfect square in Z/(p); or, if a is in the
same quadratic residue class as 1:

(—S—) = -1 otherwise.

We now list some properties of Z/(p) for odd primes p that will be of use
in the sequel:
pl. ‘There are (p-1)/2 squares and-(p-l) /2 monsquares
in the multiplicative group Z/ (p)+.
pe. (%) = (%) if and only if there is a t such that
atzs'.: b (mod p)

p3. (i)—) is a homomorphism of the multiplicative



group Z/(p)+ into the multiplicative

group {1,-11}.

~ When p is an odd prime, the equation
- (14) x*= a0 (mod p)
either has two nonidentical solutions, or it has none. Since every
XE Z/(p)+ is a solution to an equation of the form (14), there are
only (p-1)/2 equations of form (14) which have solutions., Hence pl.

If a and b are squares in Z/(p), so is there product. Let a
be a nonsquare. If b is a nonzero square, ab must be a nonsquare.
As b ranges over all (p-1)/2 possible values of nonzero squares, ab
- ranges over all (p-1)/2 possible values of nonsquares. From this |
it follows that if a and c are both nonsquares, there is some t
such that atzsi ¢ (mod p). Hence, p2. It also follows that if ¢ is
a nonsquare, ac is a non zero square. Hence p3,

By p2 if ba# 0 (mod p) ax>w bx? if and only if (%) = (%) .
THE DIAGONALIZATION OF FORMS OVER Z/(p"). WITT'S THEOREM FOR RINGS

In this section we introduce two powerful tools for reducing the
problem of équivalence. The first result says that if we are working
in one of the rings Z/(p") where p is an odd prime, every form is
equivalent to a diagonal form (i.e. a form whose matrix representation
is diagonal). The second result, which is usually just proven for forms
over a field, says that if we can decompose some form h = f + g over

one of the rings mentioned sbove, the equivalence class of h depends

solely on the respective equivalence classes of f and g. In brief,



the space fl(Z/(ﬁw))/ﬂv has an inherited structure of a semigroup under.
the operation induced by disjéint union.

The failure of these two results to hold for p = 2 accounts .
for some of the difficulty encountered in finding invariants for
‘equivalence over the rings 2/@".

Now let us consider the algebra of n x n matrices over,the ground
ring R, Let I denote the identity matrix, and Iij the matrix all
~ of whose entries are zero except for the (i,j) entry which is the
multiplicative identity of R, lLet Sij =1 + Iij' Then Sij' = Sji'
If A is ann X n matrix, SijA is the matrix obtained from A by adding

-

the jth row of A to the ith. AS;. is the matrix obtained from A by

. Ji
adding the jth colum of A to the ith. Let Tij = (I + Iij + Iji -
- L= ; i :
Iii Ijj)’ Tij Tij‘ TijA,lnterchanges the ith and jth rows of

A while AT i interchanges the columns.

Lemma If p" divides each element of A, pu divides each element of
SijA’ Asji’ TijA’ and AT,
“The proof is immediate.

ju

THEOREM 1  Every form £ is equivalent to a diagonal form over Z/{p")
provided p is an odd prime,

The proof consists of an algorithm, which we set forth straight away.
Let A;((aij)) be the n x n matrix representation of some form f. We use
the notation ''¢'" to mean "replace'', For example, a;j¢=a,. means

137

replace the value of a4 with the value currently Called ajj'

i (i) lLet pu be the highest power of p that divides all

the aij'

e I AT AT



(i1)  If pY is the highest power of p that divides a .

e

(which we hereafter write as p?“ a, ) proceed to (vi).
(iii) If there is an a,, such that p- [[a;; proceed to (v)..

. i, u
(iv) Find a5 such that p ‘,aij' AeS. AS,

5540 Then ass

has been replaced with the value a . + Zaij so that

pu”aij_-

(v)  AeT. AT, sop’fla . .

(vi) It is still true that p is the highest power of p
dividing each element of the matrix A. Hence we can
solve for Ty the congruences | |

T ta =0 {mod pw5.

iann %n

(vii) Let

n

T=1+S8SMr.I. .
. i*in
i=2

A«TAT' to obtain a matrix of the form
A% 0
o 0 a.n
equivalent over Z/(p") to A
(viil) If A* has &imension greatex than 1 x 1, repeat steps
(i) through (viii) on A¥*, otherwise, fin.

By this procedure we construct a diagonal matrix equivalent to A over

/@Y.
L The next theorem we state without proof since the proof is so
similar. |
‘z - THEOREM 2 If F is a field of characteristic not equal to 2, every form f

is equivalent .to a diagonal form over F.



THEOREM 3  If fi~gi over R for i=1,...,N the disjoint sums

N N
{15) f=8WM{£f.~SWMg. =g over R,
; i T ei
i=] i=1
N
"~ proof: If TiA(fi)Ti' = A(gi) , let T be the disjoint sum SUM T:i.'
i=1

Then TA(f)T' = A(g).

THEOREM 4  If f*a~g* over Z/(pw) and f* + fawgH 4 g over Z/(p"),

then f~vg over Z/(p") provided that p is .an odd prime.

proof: By the above theorem we can assume that f* = g*. By theorem 1
we can assume £* is in diagonal form. Then the theorem will follow

by induction on the number of variables in £* provided that we can

2 2

" demonstrate its truth for f* = axz. Now if ax“ + fasax® + g we have

the matrix equation

o BB AR BT e

where A is the matrix representation of f, and B that of g. Hence

tza + SAS!' = a
(17) tal' + SAQ' = 0
: alT' + QAQ' =B

where 0 is the appropriate sized row matrix of zeros.

Let us look toY = Q + zIS for a solution, choosing an appropriate
z, if possible, to suit our needs. Then |
(18) YAY' = (Q + ZIS)ACQ' + 28'T') =

QAQ' + ZQAS'T' + ZTSAQ' + z TSAS'T' =

B - aIT' - ztalT' - ztaTT' + z%(a-t2a)TT' =
B- - aIT'(1 + 2zt ~ zz + zztz) =

B - alT'((zt + 1D? - 25

The last term will be congruent to B (mod pw) provided we can select .
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-z so that zt + 1= #+z (mod pw), or so that z(t * 1) = -1 (mod pw).
This can be accomplished if either t + 1 or t - 1 is a unit in Z/(p"),
which is always the case when p is an odd prime, Hence YAY'=DB and.
f~g over Z/(pw) as we wished to show.

A similar proof yields
THEOREM 5 (Witt) If f*~g* over a field F and f* + fogh + g over F,f

then fasg over F, provided F is not a field of characteristic Z.

TTEEEQUIVALBNCE OF FORMS OVER Z/(p)

Using theorems 1 and 3 and properties pl, p2 and p3 of the rings
Z/(p) we will be able to find a complete set of invariants for the '
" classification of forms over those rings when p is an odd prime.

Lenma x2 + yz

it

a# 0 (mod p) is always solvable in Z/(p) .

proof: When p = 2 the result is trivial. By pl there are (p-1)/2
nonzero squares in Z/(p)+ and hence 1+(p-1)/2 squares in Z/(p).

2 and at least one

There are thus 1+(p-1)/2 numbers of the form a-X
of them is a square.

Lemma Two binary forms f = a,x 2 4 ax,®and g = byt + by’
=oTma Ty ™1 2%2 £= 01y 2Y2
for which d(f)d(g) £ 0 (mod p) are equivalent over Z/(p) provided

p is an odd prime and
(19) (%%@—) . c%gl)

‘ a a

proof: Case 1. d(f) = -1. Then (5-]:) . -(52-) and similarly for the b;.
a

We can assume without loss of generality that (ﬁli = (519, for if not

change the order of the Yy By p2 we can find tq and t, such that

. zg 2_-"'...

asty w.bl and a,t, ..bz. If
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ty 0
(20) T=1q t,

then TA(E)T' = A(g) -(mod p)

2

Case 2, d(f) = +1, It will suffice to show that fnaxlz + X, for

an identical argument would show g~y12 + )'rzz-. Since

a a
(igg = (ﬁgawe can find t such that altzsa aye Hence the change in

. : 2 .
variables x; = ty; and x, =y, yields faaaz(ylz *+7y,7). By the previous

lemma we can find t, and t, not both congruent to zero such that

2, 2 4 tzz. Making the change of variables 2y, = tx; * X,
and Zyz = 1% - X, yields f«sxlz + xzz.

e t,
THEOREM 6 Let f and g be two quadratic forms over Z/(p) such that
d(f)d(g) # 0 (mod p). If p is an odd prime, then fa g if and only if

- both forms have the same number of variables and condition (19) holds.
proof: The necessity of the condition is immediate. For, if

TAHT' = A(g), (det(T))%d(H) = d(g) which, by p2 implies (19).

We use induction on the number of variables to show sufficiency. Again,
there is no loss in generality if we assume f and g to be diagonal

forms. If £ and g are unary forms, the result follows from p2. If

f and g are binary forms, use therprevious lenma. If £ and g are n-ary
‘forms where nx3, we can write f = fl + fO and g = g1 * gp where fO and
gy are equivalent binary forms. For, from among the diagonal coefficients
of £ there are at least two of the same quadratic residue class modulo p.
Splitting these off to form f0 we see that

d(£,)
=)

(21) (——

= +],

Likewise we can find g0 with the same relation holding. By the previous
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lemma, f()"" gg Since by the multiplicative 'propérty of the Legendre
symbol, the conditions of the theorem still hold for fl and gqs we
may apply the inductive hypothesis to show that fl-v'gl. It now
follows as a consequence of theorem 3 that f~g.

According to the above theorem, the quadratic residue class
of the determinant and the dimensionality of the form uniquely deter-
mine its equivalence class over the ring Z/(p)} when p is an odd
prime and when also p does not divide the determinant of £.

The following theorem is also useful,
THEOREM 7 (The first lifting theorem) If d(f)d(g)# 0 (mod p)
and f~g over Z/(p) where p is an odd prime, then f~g over Z/(p")
for all w2 1. ' |
proof: Assuming f~g over L/ (p"¥) we shall prove f~g over Z/ (pW+1) .
Let A and B be the matrix representations of £ and g respectively,
By the inductive hypothesis, the exists a matrix T invertible over

/(") such that

(22)  TAT'= B (mod p¥)
or,
(21) TAT' = B + p¥U (mod p**1)

where U is a symmetric matrix. Since d(f) ;é 0 (mod p), det A # 0 (mod p).
Hence A is invertible over Z/ (pW+1) , and we denote its inverse in

that ring by A"l. Similarly, T is also invertible in Z/ (pW+1) , and its

inverse we also denote by 1,

Since p is an odd prime, 2 possesses an inverse. lLet

(23) =1 -gpur Al
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Then

(24) SAS'= (T - %«-pw '-lA"l)A(T_I - %_pWA-LF—ivi_
| A
AT - & pfur latare - LpYTaatT U=

TAT' - PU=B (mod p** 1.

COMPLETE INVARIANTS FOR FORMS OVER Z/(p")
If £ is a nonsingular diagonal form over Z/(ﬁw) we can, by re-

| arranging the variables of f, see that f is equivalent to the disjoint

suim.
w-1 i

(25) SUM p fi
i=0

where each of the fi are diagonal forms, either null {that is, vacuous)
forms, or with determinant prime to p. If a foim £ can be equivalenced

to a form as in (25), we say that (25) is a proper decomposition of

f over Z/(pwj. The diagonalization theorem tells us that every non-
singular form f has a proper decomposition over Z/(pw) provided that
p is an odd prime. Our next theorem tells us that this decomposition
is essentiaily unique.
THEOREM 8 If f and h are two nonsingular forms over Z/(ﬁw) where
p is an odd prime, and they have the proper decompositions

w-1 . w-1

- (26) £~ SUM p'f, and h~SUM ph

4 p'h over Z/(p")
i=1 i=:

then f~g over Z/(pw) if and only if fi'vhi over Z/(p) for every
i=0,1,...,w-1.

l - .
proof: The condition is sufficient. For, if finzhi over Z/(p} are
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nonsingular, the first lifting theorem tells us that £ ~h, over
.Z/(pw). Hence pifiw pihi over Z/(pw) , and this is also true if fi -
and h; are null forms. By theorem 3, f~h over /().

The condition ié also necessary, and we shall show this by in-
duction on w. For w=1, the theorem is true by the results obtained
in the last section. Let us suppose the theorem tru for 1sw<N.
Since f~h over Z/ [pN) , T~h over Z/(p) and hence £y~ h, over Z/(p) .
By the lifting theorem, fOM h(f over Z/ (pN). By theorem ti, then,

N“"l i_ N-]. i N
(27} SUM p fi*v SMph, over Z/(p).
i=] i=1 "t ‘

Rewriting, we find

N-2 . N-2

i i N
(28) P ?l__ﬂ(\}’i pEg~p g}__ﬂg phy, over Z/(p)
which implies
Nz N2y N-1
(29) ?:Jfg Pt ™ EETS phy,, over Z/(p" 7}.

Now both forms expressed in (29) are properly decomposed forms over
.Z/(pN-l) and, applying the inductive hypothesis, we obtain

(30) fiafhi over Z/(p) for i=1,...,N-1.

Since we have already shown fo‘w}‘mo over Z/(p) the theorem is true
for all w.g The next théorem is the second lifting theorem.
THEOREM 9 If f~h over 2/(p") where p' does not divide d(£), and
Pp is an odd prime, then f~h over Z/(pw) for all wz1l,

proof: We need only consider w>u. Let ‘
w-1

W'l . .
(31) . farf" = surg p'f";, and heh" = su\g p'h"; over z/(p"
1= i=

where £ and h" are proper decampositions over Z/ (pw) . Now d(f") =
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tzd(f) (mod p*) for some t prime to p. Thus pu does not divide d(f")
and hence all the f”i for i u are null forms. Similarly for the h'*i, '_

i2u, Hence,

u-1 . | u-1 .
(32) fvf' = SM p'f"; , and h~h' = SUM plh”i over Z/(p").
i=0 , i=0

In particular, (32) also holds over the ring Z/(pu). But f~h over
Z/(pu). Hence f”i"'h"i over Z/(p) for i<u-1 and also for iau. By
the previéus theorem, f~h over Z/ (pw) . |
Combining results, we can state: .
For any integral quadratic form £, let c(f,i), u(f,i), r(f,i), and w(f)
i=1,...,N b_e nunbers such that |
N £,1) W . . L
dl fwglji! pu( 1 £, over Z/(pY), ufi)= u(f,j) only ff i=]
d2 p"""1 is the highest power of p dividing d(f) # 0, and
a3 T(£,i) is the rank of £y, c(f,i) = (f_(_f;)_) with
| d(£,) # 0 (mod p). P |
Then ' rl such numbers exist for every nonsingular f,
r2  they are uniquely determined by the genus of f, and
r3 £ v gonly if w(f) = w(g), c(f,i) = c(g,i),‘
r{f,i) = r(g,i) and u(f,i) = u(g,i) for 1;1,2,3, A
The above nunbers are called the p-adic invariants of £. Note also
_that the nhmbefs are explicitly calculable. Hence, the classification
of nonsingular forms over the rings Z/(p ) for all odd primes p and all

u 21 is completely solved.
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CONCLUSIN

Two more theorems will round off our results.
THEOREM 10 If f v g, d(f) = d(g).
proof: If d(f) = 0 then d(g) = 0. For otherwise, we can find an integer
m prime to d{g), and hencelfnug over Z/(m) which implies tzd(f)'z d(g) #0
(mod m), a contradiction. We can now assume that d(f) and d(g) are both
nonzero. Thus, feg over Z/(d(g)) and d(g) divides d(f). Similarly,
d(f) divides d(g} and so d(f) = d(g).

We state without proof
 THEOREM 11 If f v g, the signature of f equals the signature of g.

The signature of a form is defined as the number of positive terms
minus the number of negative terms in the diagonal of any equivalent
diagonal form. Two forms are equivalent over the reals:if and only if
their ranks and signatures agree. The proof is similar to the proofs

of the previous section, and does not bear repeating.

| DESCRIPTION ‘013 PROGRAM '

The design of the program is straight forward, The overall
organization is as follows.

Operation begins in MAIN, which calls subroutine DATA. DATA reads
the Murasugi matrix calculated in Lombardero's program {4], and returns
its symuetrization in integer A and real*8 E. A call to subroutine
MATEVL places the eigenvalues of E in its diagonal, from which MAIN
computes the determinant and the signatufe of A. (MATEVL is a subroutine
available in MATPAK, a matrix package, to users of the Princeton

University'com@uter center.) The integer matrix A, its rank N and de-



terminant D are passed to subroutine CALCUL, provided that A is

neither singular nor unimodular. CALCUL calls subroutine FACTOR, which
factors D into its prime divisors, stored in incresing order. For
each odd prime divisor, p, of D, CALCUL reduces A to diagonal form
(mod p¥) where p" ! is the highest power of p dividing D. This it
accomplishes through the auxilliary subroutines POWER, ADD, TRANS

and function INV according to the algorithm outlined in THEOREM 1.

AD adds a given row and column to another row and columm; while

TRANS exchanges a given row and column for another. POWER finds

~ the matrix element aij described in steps (ii) through (iv) and the

power pu of p described in step (i). The equation

- W

(33) ra *ta = 0 (mod p)

is solved as follows: Suppose pu to be the highest power of p dividing
, U .-

& Then p~ divides a e We solve

(34) “r(a /P + (a;/pD) =0 (mod p' )

by setting r = (an:.t/pu)(am,‘/pu)'1 where the inverse is taken over the
residue ring Z/(p" V). T solving (34) alsd.solves (33). FUnctionlINV
first calculates the inverse in the ring Z/(p) and then lifts to the
“ring /(0" |

After A has been diagonalized, A, p, w, N and D are passed to
subroutine INVAR which calculates the numbers c(f,i), u(f,i), r(f,1)
and w(f) according to the scheme outlined in the section before the last.
These are stored in mafrix NUM. Subréutine CHAR(3,p) ¢mnputes (%9
using the fornula |

miEoreM 12 AP D/2 = @ (mod p).
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proof: a(pul)/zez +1 (mod p) since (a(p'l)/z)2 =all=1 1fa- tz,
é(p~1)/2 =1, by the same reasoning, xP"D/2 21 can have at most (p-1)/2
solution , which we have shown to be the (p-1)/2 squares. Hence if a is
not a square, aP-D/2 - 4 |

After INVAR has computed the above p-adi¢ invariants, control passes
to subroutine GHECK whech tests for internal constraints on the invariants.

They must satisfy the relations:

(35 surg u(f,rf,1) = w-l
s
M
(36) SUM r(f,i) = N
i=0
M .
(37) prop (HEa4)y - (dld),
i=0 P P

If these relations are not satisfied, an error message will be printed.
If they do, control returns to MAIN via INVAR and CALCUL.

MAIN coo%dinates all the outputting.
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FOOTNOTES

1 3

A knot K is an embedding of 81 in R°. K and K are said to be
of the same type if theré is an orientation preserving homoeomorphism
of R3 that maps R® - K into R3 - K'. A link of m components is an
. embedding of m copies of st into RO,
2 As reported to me by H, Trotter. The Murasugl matrix is defined
in [4].

This is not the usual definition of éemiequivalence, but can be shuwn
to be equivalent to any of the other definitions. In particular,
we shall later show that condition (ii) implies d(f) = d(g).
4 The Chinese remainder theorem states that if m i=l,...,n
are all relatively prime, e’z for i=1,...,n arbitfary values, then
the system of equations

‘ X &a, {mod mi) i=l,...,n

are simulténecusly solvable for x€ Z. Thus to show that fag over
Z/(m) we need only shw farg over Z/(p a(l)) where

m = PROD p; 21,
i=l

5 A nice proof is found in [3].
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tion of ‘the Uncertainty Fﬁhct;oﬁ




viere poo . dis the probabilily assoclated with Lhe category A x Bi j
3 -
LA and B oare independent partitions, that is

Lo D =

g P
“on A w B, P) o= U(ALP) + U(B,). Tt 1s this property of the uncertainty

P oy
Daeetion that justifies its definition, Tor, if the partitions A and
Goere tndependent then the sum of their uncertainiies should just equal
thelr Jedlnt uncertainty, seeing Lhalt knowledge of both A and B suffice
to determine their joint ocutcome,

Yt can be shown analytically that given the constraints that
Y oand B oare fixed, the uncertainty U(A x B, P) is greatest when A and B
are independent partitions,
1T conditional Uncerbainty

Woomight ask what is the uncertainty in B if A is known, or, more
~roaeizrely, what is the probable wicertainty in B if we know A, To

¢ awer this question requires knowledge of A x B and we define

n

S U{B/A,P) = SUM p
i=1

wr be the conditional uncertainty of B given A. Ii corresponds to

A" U(B,Ai}

whe probable uncertainty in B given the A category of some member of

s pesulation.  {6) can be rewriiten

11
SUM p, .
R |

m
% (- suM {p.

U{B/A,P) i j/pA,i

) log (pi,j/pﬂ,i))
from which it follows that

{8} U{B/A,P) = U(A x B, P) - U(A,P) .

As we indicated earlier,

(9) Uln,p) + U(B,P) - UM x B, P) =0

i oand only iT A and B are independent. Hence,

(3.0) u@,r) -~ u{B/A,P) =0

T and only if A end B are independent. Othertimes, the left hand side
of (10) 45 positive. Moreover, U{R/A,P) = ﬂ{gﬁ if and only if knowledge
i A conpletely specifies B.  This sugpests . ﬁ . :

i



IV A Proposed Measu T A sociatio -
el T OPOBCA Teasure of.f55oclation By

T propose //7/
2 = (U(,P) - U{B/A,P)/UB,P)

25 0 new measure of association between independent varisgble A and de-

pendent variable B, Tt can be shown that 2 has the following properties:

(i) » is indeterminate iff*ﬂ is a trivial partition
(ii) the value of 2z lies belween O and 1
(111i) =2z = 0 ifr A and B are independent partition@
(iv) 2 = 1 ifr A deteormines B | '

(v) =2 is order independent

ntuitive content of the 7z measure is this: 1t measures the extent
o hetps om yeeidich ny. _ '
tmovliedee of A'ﬁp,ermwnes B, or the extent that A fixes B, A high =

value weans that A has a high predictive value in relation to B,

i uO e AdeLJOnaj Problem

o e s ot s

it is clearly necessary Lo have scome kind of measure of the signifi-
waneo ol 7z, for even lowv 2 scores might be noteworthy if they are sig-
sificantly lavger than 0. Also, a significance level would indicate
the reliability of predictions made from A,

o more mathematical problem is this: given the marginal partitions
A and B what is the largest value of z possible among all possible
distributions between A and B? I have guggested an algorithm for Tinding
this value, bub I won't describe it here. The result is this:
If varieble A has & similar distribution te B, there is a larger span

a0

of possible z values (a broader spectrum).

Michael Wigler
e? 1 { !"f { i i’ . '! 1 ‘_“,..
December 18, 1969
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