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SUMMARY

The heterogeneity and instability of human
tumors hamper straightforward identification
of cancer-causing mutations through genomic
approaches alone. Herein we describe a mouse
model of liver cancer initiated from progenitor
cells harboring defined cancer-predisposing
lesions. Genome-wide analyses of tumors in
this mouse model and in human hepatocellular
carcinomas revealed a recurrent amplification
at mouse chromosome 9qA1, the syntenic re-
gion of human chromosome 11q22. Gene-ex-
pression analyses delineated cIAP1, a known
inhibitor of apoptosis, and Yap, a transcription
factor, as candidate oncogenes in the amplicon.
In the genetic context of their amplification, both
cIAP1 and Yap accelerated tumorigenesis and
were required to sustain rapid growth of ampli-
con-containing tumors. Furthermore, cIAP1 and
Yap cooperated to promote tumorigenesis.
Our results establish a tractable model of liver
cancer, identify two oncogenes that cooperate
by virtue of their coamplification in the same ge-
nomic locus, and suggest an efficient strategy
for the annotation of human cancer genes.

INTRODUCTION

Tumorigenesis results from a progressive sequence of

genetic and epigenetic alterations that promote the malig-

nant transformation of the cell by disrupting key processes

involved in normal growth control and tissue homeostasis
(Hanahan and Weinberg, 2000). Since complex signaling

networks control these processes, mutations in many

genes can provide the cell with a specific aberrant capabil-

ity. Consequently, the combination of genetic alterations

that can occur during tumor evolution is enormous, per-

haps underpinning the substantial heterogeneity in tumor

behavior that occurs even within a particular tumor type.

In addition, genomic instability is a common, if not univer-

sal, feature of advanced tumors. This instability provides

tumor cells with the ability to adapt to new environments

but may also increase the rate of bystander mutations

that do not contribute to the malignant phenotype.

The completion of the human genome project has en-

abled new approaches for studying cancer genetics and

cancer genomes. For example, gene-expression profiling

using microarrays has improved the classification of some

tumor types (Segal et al., 2005). Moreover, DNA rese-

quencing has identified unanticipated mutations in onco-

genes such as BRAF and EGFR, thus suggesting new

drug targets or therapeutic strategies (Davies et al., 2002;

Lynch et al., 2004). Finally, genome scanning for gene

copy-number alterations has identified many loci harbor-

ing candidate cancer genes (Kallioniemi et al., 1993;

Lucito et al., 2003). Because of these advances, efforts

to catalog all of the mutational events that contribute to

human cancer can now be envisioned. Nevertheless, for

such information to be efficiently translated into improve-

ments in cancer diagnosis and therapy, cancer-causing

mutations must be distinguished from irrelevant alter-

ations linked to complex cancer genotypes. Furthermore,

without in vivo validation, there is little stimulus for thera-

peutic development efforts. Integrative strategies to iden-

tify and validate genes with functional relevance for tumor

initiation and progression are clearly needed.

Hepatocellular carcinoma (HCC) represents a tumor type

where a more complete understanding of the underlying
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genetics could have a major impact on treatment of the

disease. HCC is the fifth most frequent neoplasm world-

wide but, owing to the lack of effective treatment options,

represents the third leading cause of cancer death (Parkin

et al., 2001). The only curative treatments for HCC are sur-

gical resection or liver transplantation, but most patients

present with advanced disease and are not candidates

for surgery. To date, systemic chemotherapeutic treat-

ment is ineffective against HCC, and no single drug or

drug combination prolongs survival (Llovet et al., 2003).

The development of HCC is invariably associated with

liver damage caused by chronic hepatitis, extensive alco-

hol intake, or toxins, sequentially resulting in liver cirrhosis,

dysplastic lesions, and finally invasive liver carcinoma. Re-

cent studies suggest that these agents can target liver

progenitor cells (‘‘oval cells’’ in rodents and ‘‘hepatic pro-

genitor cells’’ in humans), leading to their expansion and

transformation (for review, see Alison and Lovell, 2005).

One key target in liver carcinogenesis is p53, which is

functionally attenuated by hepatitis B virus X protein

(Wang et al., 1994) and is a mutational target of aflatoxin

B1 (Aguilar et al., 1994). Other established lesions in liver

cancer include activation of the c-myc, CCND1 (cyclin

D1), or c-met oncogenes, as well as mutations in compo-

nents of the Ras/PI3 kinase pathways (Lee et al., 2005;

Feitelson et al., 2002; Suzuki et al., 1994). Still, the molec-

ular genetics of liver cancer, and how specific lesions

interact to produce its aggressive characteristics, remain

poorly understood.

Mouse models of human cancer provide powerful tools

to investigate cancer biology, genetics, and therapy. Here

we used a flexible mouse model of hepatocellular carci-

noma to search for spontaneous mutations arising in tu-

mors initiated by different oncogenic lesions and then

compared these to alterations observed in human can-

cers. This approach enabled us to pinpoint ‘‘driver genes’’

that might contribute to human liver carcinogenesis and,

using our model, to validate these changes in an appropri-

ate in vivo context. Consequently, our study not only iden-

tified two oncogenes in the same focal amplification that

cooperate during tumorigenesis but, more broadly, high-

lights the utility of integrating mouse models and cancer

genomics for the functional annotation of cancer genes.

RESULTS

Generation and Transplantation of Genetically

Altered Liver Progenitor Cells

Most mouse models for liver cancer are based on germline

transgenic approaches that direct expression of an onco-

gene to the liver using a tissue-specific promoter (Sandg-

ren et al., 1989; Murakami et al., 1993). Although these

models continue to provide important insights into the

pathogenesis of liver cancer, they express the oncogene

throughout the entire liver, a situation that is distinct from

spontaneous tumorigenesis. Moreover, incorporation of

additional lesions, such as a second oncogene or loss

of a tumor suppressor, requires genetic crosses that are
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time consuming and expensive. Finally, traditional trans-

genic and knockout strategies do not specifically target

liver progenitor cells, one proposed ‘‘cell of origin’’ of the

disease (Alison and Lovell, 2005).

Based on our previous work in the hematopoietic sys-

tem (e.g., Schmitt et al., 2002), we reasoned that the study

of genetic interactions in liver tumorigenesis would be fa-

cilitated by ex vivo genetic manipulation of liver progeni-

tors followed by their retransplantation into the livers of re-

cipient mice (Figure 1A). Embryonic hepatoblasts express

high E-cadherin levels, enabling these cells to be isolated

to high purity from E12.5–15 fetal livers using magnetic

bead selection (Nitou et al., 2002). These cells also ex-

pressed markers characteristic of bipotential oval cells

(see Figure S1A in the Supplemental Data available with

this article online), one presumed target of transformation

in the adult liver (Alison and Lovell, 2005). Although they

proliferated poorly in initial experiments, the introduction

of defined medium (Block et al., 1996), feeder layers,

and gelatin-coated plates to the culture conditions en-

abled the hepatoblasts to be expanded without loss of

their defining characteristics (data not shown). These con-

ditions also allowed efficient gene transfer using MSCV-

based retroviral vectors expressing green fluorescent pro-

tein (GFP) (Figure S1B) or short-hairpin RNAs (shRNAs)

capable of suppressing gene expression through RNA in-

terference (Zender et al., 2006).

To determine whether genetically modified hepato-

blasts could colonize recipient livers, we used a protocol

that optimizes engraftment of transplanted cells (Guo

et al., 2002). Animals were pretreated with retrorsine, an

alkaloid that exerts a strong and persistent block of native

hepatocyte proliferation and increases the competitive

advantage of transplanted cells (Laconi et al., 1998). Ten

days after the last retrorsine treatment, 2 3 106 GFP-

tagged E-cadherin+ liver progenitor cells were delivered

to the liver by intrasplenic injection. One week later, immu-

nohistochemical analysis of liver sections revealed that

approximately one percent of the host liver consisted of

‘‘seeded’’ GFP-positive cells that were embedded within

the normal liver architecture (Figure 1B).

Generation of Liver Carcinomas from Transplanted

Liver Progenitor Cells that Resemble Human HCC

We next tested whether this approach could produce liver

carcinomas in situ. Owing to the importance of p53 inacti-

vation in this disease, we isolated hepatoblasts from p53�/�

fetal livers and transduced these cells with retroviruses co-

expressing myc (c-myc), activated Akt (Akt1), or oncogenic

Ras (H-RasV12) (each of which affects signaling pathways

altered in human liver cancer) and GFP. As above, these

transduced cell populations were transplanted into retro-

rsine-treated mice. To further facilitate expansion of the

transplanted cells, recipient mice were treated with CCl4
(Guo et al., 2002) and monitored for signs of disease by ab-

dominal palpation and whole-body fluorescence imaging.

Although p53�/� hepatoblasts were not tumorigenic dur-

ing the analysis period, each of the cell populations that



Figure 1. Development and Character-

ization of a Genetically Tractable, Trans-

plantable Mouse Model of HCC

(A) Schematic diagram showing the generation

of in situ liver carcinomas following retroviral

transduction of purified E-cadherin+ hepato-

blasts (see Figure S1).

(B) Analysis of liver sections from mice seeded

with GFP-expressing hepatoblasts 1 week

postreconstitution. Left, H&E; middle, anti-

GFP immunofluorescence; right, DAPI.

(C) External GFP tumor imaging (top panels) or

direct imaging of the respective explanted tu-

mor-bearing livers (bottom panels) of mice re-

constituted with p53�/� hepatoblasts trans-

duced with the indicated oncogene.

(D) Survival curves of mice after intrahepatic

seeding of p53�/� liver progenitor cells trans-

duced with the indicated oncogene or control

vector.

(E) Explanted murine liver carcinomas (p53�/�;

myc) were grown briefly in culture and then di-

rectly injected into the left liver lobe. Shown is

a GFP-expressing (left) in situ tumor (right) 42

days postinjection.
also expressed an oncogene eventually produced GFP-

positive tumors in the livers of recipient mice (Figure 1C, top).

Gross pathological analysis of explanted livers revealed

that Myc-expressing tumors differ significantly from those

expressing Akt or Ras (Figure 1C, bottom). First, Myc-ex-

pressing tumors grow primarily as unilocular tumors,

whereas Akt- and Ras-derived tumors show aggressive,

multilocular, and infiltrative intrahepatic growth. Second,

the intrinsic tumorigenicity of p53�/� liver progenitor cells

expressing Myc was significantly lower than those ex-

pressing Akt or Ras (Figure 1D). Of note, p53 loss clearly
contributed to tumorigenesis since tumors arising in

mice reconstituted with p53+/� hepatoblasts showed fur-

ther delayed tumor onset and loss of the wild-type p53 al-

lele (Figure S1D). In most instances, GFP-positive cells

derived from established tumors could be grown in culture

and subsequently formed secondary tumors upon subcu-

taneous injection into immunocompromised mice (data

not shown) or direct intrahepatic injection into syngeneic

recipients (Figure 1E).

An experienced liver pathologist (P.F.) examined the he-

matoxylin and eosin (H&E) stained sections derived from
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Figure 2. Murine Liver Carcinomas De-

rived from E-Cadherin+ Liver Progenitor

Cells Histopathologically Resemble

Human HCC

(A) H&E-stained sections of human HCC with

the indicated histopathological variegation

(left panels) shown adjacent to corresponding

histopathologies in murine liver cancers arising

from p53�/�;myc hepatoblasts (center panels).

Anti-CK8 immunohistochemistry of the murine

tumors is shown at right.

(B) H&E staining of in situ and subcutaneously

retransplanted HCCs derived from p53�/�;myc

hepatoblasts.
Myc-induced murine hepatomas (Figure 2A) and classi-

fied most as moderately well to poorly differentiated

HCCs with a mostly solid, sometimes mixed solid/trabec-

ular growth pattern. A smaller proportion of tumors dis-

played growth patterns resembling trabecular or pseudo-

glandular HCC. All tumors examined stained positive for

cytokeratin 8, confirming their liver origin. However, de-

spite their derivation from cytokeratin 19-positive liver

progenitor cells, most HCCs lost this marker during tumor-

igenesis (Figure S1C). The tumors also expressed high

albumin levels and, similar to the situation in human

HCC, about half were positive for a-fetoprotein. Most

also expressed moderate levels of vimentin (Figure S1C),

a marker linked to aggressive tumor behavior (Hu et al.,

2004). Transplanted hepatomas retained their HCC histol-

ogy when injected orthotopically into the liver or subcuta-

neously into immunocompromised mice (Figure 2B).

Therefore, ex vivo-manipulated liver progenitor cells can

produce tumors that recapitulate the histopathology of

human HCC.

ROMA Identifies Spontaneous Mutations in a Subset

of Murine Liver Carcinomas Including a Recurrent

Amplicon at Chromosome 9qA1

To further molecularly characterize the murine HCCs de-

scribed above, we searched for spontaneously acquired

lesions in these cancers using representational oligonu-
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cleotide microarray analysis (ROMA), a genome-wide

scanning method capable of identifying copy-number

alterations in tumor cells at high resolution (Lucito et al.,

2003; B. Lakshmi, I.M. Hall, C. Egan, J. Alexander,

J. Healy, L.Z., W.X., M.S.S., S.W.L., M.W., and R.L., un-

published data). Each human or mouse ROMA array con-

sists of 85,000 oligonucleotide probes, allowing genome

scanning at a theoretical resolution of �35 kb. Although

we did not detect focal genomic alterations (<5 Mb) in liver

cancers induced by Akt, a number were detected in those

initiated by Myc or Ras (Table S1). For example, a Ras-

expressing tumor harbored two focal amplifications on

chromosome 15 (Figure 3A), one containing Rnf19 and

the other containing c-myc (Figure 3B). While Rnf19 has

not been linked to tumorigenesis, c-myc alterations are

common in human liver cancer (Peng et al., 1993), and

myc cooperates with oncogenic Ras in transgenic models

of HCC (Sandgren et al., 1989). These observations under-

scored the relevance of our model and suggested that

further analyses would reveal other genes involved in

human cancer.

ROMA analysis of seven independent Myc-expressing

HCCs identified a focal amplicon on mouse chromosome

9qA1 in four of these tumors (Figures 3C and 3D; Figure S2

and Table S1). The minimal overlapping region is approx-

imately 1 Mb and contains genes encoding for several ma-

trix metalloproteinases (MMPs), Yap, cIAP1 (Birc2), cIAP2



Figure 3. ROMA Identifies Focal DNA Amplifications in Murine HCCs

(A) ROMA profile of a tumor derived from p53�/�;Ras embryonic hepatoblasts. Data plotted are the normalized log ratio for each probe (*EST).

(B) Single-probe resolution of chromosome 15 corresponding to the tumor described in (A).

(C) Genome-wide profiles of three independent HCCs (Tu-7, Tu-9, and Tu-13) derived from p53�/�;myc embryonic hepatoblasts.

(D) Single-probe resolution of chromosome 9qA1 from the tumors described in (C). The minimal overlap region contains the indicated genes.
(Birc3), and Porimin (Figure 3D; see Table S1 for break-

points). Amplification was confirmed by genomic qPCR

using a probe within the cIAP1 gene (data not shown). In-

terestingly, 9qA1 was never found amplified in Ras- or Akt-

driven liver carcinomas as assessed by either genomic

qPCR analysis or ROMA (n = 21; Table S1 and data not

shown). These observations suggest that at least one of

the genes in the 9qA1 region cooperates with myc and

p53 loss to promote hepatocarcinogenesis.

Comparative Oncogenomics Reveals Lesions in

Common between Murine and Human Cancers

In parallel to our analysis of murine HCCs, we initially con-

ducted ROMA on 25 human HCC samples. Although

these tumors contained more alterations than their murine

counterparts, using a strict cutoff of <5 Mb, we detected

copy-number alterations affecting genes previously linked

to HCC (Table S2). For example, three tumors had a chro-

mosome 11 amplification containing CCND1, two had a

chromosome 7 amplification containing c-met, two had
a focal deletion on chromosome 10 containing the PTEN

tumor suppressor, and one had a deletion of chromosome

9 harboring the CDKN2A (INK4a/ARF) locus.

We also detected a focal amplification on chromosome

11q22, a region that is syntenic to the murine 9qA1 locus.

This tumor contained a c-met amplification (left peak) on

chromosome 7 and three sharply delineated amplifications

on chromosome 11 (Figure 4B), including CCND1, B0 (con-

taining no known genes), and 11q22. A second HCC har-

boring the 11q22 amplicon was identified in a set of 23

additional human HCCs (Figures S2C and S2D), as well

as in 4 of 53 human esophageal cancers (data not shown),

indicating that it occurs in gastrointestinal malignancies

derived from developmentally related organs. ROMA re-

sults were verified by genomic qPCR analysis using

probes to the cIAP1 and cIAP2 loci (data not shown).

Much like the chromosome 9 amplicon in murine HCCs,

the boundaries of the 11q22 amplicon in human HCCs

and esophageal cancers include genes encoding several

matrix metalloproteinases, Porimin, Yap, cIAP1, and cIAP2.
Cell 125, 1253–1267, June 30, 2006 ª2006 Elsevier Inc. 1257



Figure 4. ROMA Identifies Amplification of the Human Syntenic Region 11q22 in HCC and Ovarian Cancer

(A) Genome-wide profile of a human HCC harboring an amplification on chromosome 7 containing the c-met gene and three regions amplified on

chromosome 11.

(B) Single-probe resolution of chromosome 11, with genes contained within each amplicon depicted below.

(C) Genome-wide profile of an ovarian carcinoma containing the 11q22 amplification.

(D) Single-probe resolution of the 11q22 amplicon, with genes contained within the amplified region depicted below.
Cross-Species Expression Analysis of Genes

from the Human and Mouse Amplicons Reveals

Consistent Overexpression of cIAP1 and Yap

The human 11q22 amplicon is observed in other human

cancers (e.g., Figures 4C and 4D), although no driver

gene has been decisively identified (Imoto et al., 2001;

Dai et al., 2003; Bashyam et al., 2005; Snijders et al.,

2005). While it represents only one of many low-frequency

events in these tumors and the HCCs evaluated here

(Table S2), our cross-species comparison suggests that

a gene (or genes) within this recurrent amplified region is

crucial for tumorigenesis in some genetic contexts. An es-

sential criterion for establishing whether an amplified gene

might contribute to tumorigenesis is that it be overex-

pressed in the tumors where it is amplified; we further

hypothesized this should hold across species. Therefore,

we performed a comprehensive expression analysis of

overlapping genes from the murine 9qA1 and human

11q22 amplicons.
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First, messenger RNA levels for all genes in these re-

gions were measured by real-time quantitative RT-PCR

(Figures 5A and 5C; Table S3). All amplicon-positive

mouse HCCs displayed elevated mRNA levels for the

MMPs except MMP7 and had high variability in maximum

expression levels (Table S3). In marked contrast, the

mRNA levels for MMP1, MMP3, MMP8, MMP12,

MMP13, MMP20, and MMP27 were below detection limit

in 25 human HCCs, including a tumor with the 11q22 am-

plicon (Table S3). However, MMP7 and MMP10 mRNAs

were moderately elevated in an 11q22-positive HCC.

Therefore, with the possible exception of MMP10, the

MMPs are not consistently overexpressed in amplicon-

positive murine and human HCCs and probably are not

responsible for the selective advantage conferred by this

genomic amplification. Furthermore, ROMA analysis on

various 11q22-positive human carcinomas identified an

ovarian carcinoma harboring an 11q22 amplicon that de-

cisively excluded all of the MMPs (Figures 4C and 4D).



Figure 5. cIAP1 and Yap Are Consistently Overexpressed in Mouse and Human Tumors Containing the 9qA1 or 11q22 Amplicon
(A) cIAP1, cIAP2, Yap, and Porimin mRNA levels in murine HCCs that contain the 9qA1 amplicon as determined by quantitative real-time RT-PCR

analysis.

(B) Protein lysates from 9qA1-positive (+) or -negative (�) liver cancers and adult mouse liver were immunoblotted with antibodies against cIAP1,

cIAP1/2, YAP, and Porimin. * denotes nonspecific bands. Tubulin was used as a loading control.

(C) Quantitative real-time RT-PCR analysis of cIAP1, cIAP2, Yap, and Porimin expression in human HCCs. * denotes a tumor with the 11q22 ampli-

fication. Cutoff for increased expression was >2-fold of the expression level in nonneoplastic liver (normal liver).

(D) Immunohistochemistry of an 11q22-positive (top) and -negative (bottom) human HCC using antibodies against the indicated protein.
Concordantly, low-resolution technologies excluded at

least some MMPs from an 11q22 amplification in lung

cancer (Dai et al., 2003).

In contrast, cIAP1 and Yap mRNA and protein were

elevated in all mouse and human amplicon-containing

tumors examined (Figures 5A–5D). Both mRNAs were

also found to be overexpressed in some 11q22-positive
oral carcinomas (Snijders et al., 2005). Although Porimin

and cIAP2 mRNAs were elevated in all amplicon-contain-

ing tumors examined, we could not detect overexpression

of either protein in 9qA1-positive mouse tumors (Figure

5B) or an 11q22-positive human tumor (Figure 5D). These

observations may be explained by reports that many

cells express Porimin mRNA without detectable protein
Cell 125, 1253–1267, June 30, 2006 ª2006 Elsevier Inc. 1259



(Ma et al., 2001) and that cIAP1 promotes the ubiquityla-

tion and degradation of cIAP2 (Conze et al., 2005; Silke

et al., 2005). In fact, we observed that cIAP1 promoted

the turnover of cIAP2 in a dose-dependent manner in vitro

(Figure S3A) and showed that cIAP2 protein increases in

9qA1-positive murine HCC cells grown in the presence

of a proteasome inhibitor (Figure S3B). Based on these ag-

gregate observations, we considered cIAP1 and Yap as

the most likely candidate oncogenes in the region.

cIAP1 Has Oncogenic Properties and Is Required

for Rapid Tumor Growth

Inhibitor of apoptosis (IAP) proteins were originally identi-

fied in baculovirus because of their ability to block cell

death of infected cells (Crook et al., 1993). Overexpression

of cellular IAPs can inhibit apoptosis induced by different

stimuli (Lacasse et al., 1998). Although some IAPs bind

and inhibit caspases, their contribution to apoptosis regu-

lation and oncogenesis in mammalian cells is controver-

sial (Wright and Duckett, 2005).

A significant advantage of profiling the genomes of de-

fined murine tumors is that candidate genes can be eval-

uated in the genetic context where the mutation spontane-

ously arose. Our studies identified the 9qA1 amplicon in

tumors derived from p53�/� hepatoblasts expressing

Myc but not in other configurations, suggesting that these

cells would be ideal for evaluating the oncogenic proper-

ties of cIAP1. Therefore, p53�/�;myc liver progenitor cells

expressing cIAP1 or a control vector were produced using

retroviral-mediated gene transfer; as predicted, cIAP1

conferred a modest resistance to cell death triggered by

serum starvation or confluence (Figure 6A).

To determine whether cIAP1 could function as an onco-

gene in vivo, we injected the cells described above subcu-

taneously into nude mice to facilitate precise measure-

ment of tumor growth. cIAP1 significantly accelerated

the growth of p53�/�;myc hepatoblasts (Figure 6B), reduc-

ing tumor onset times by half (24 ± 2.3 days for myc + cIAP1

versus 45 ± 12.2 days for myc + vector [p < 0.05]) and

greatly increasing tumor burden (myc + cIAP1 versus

myc + vector [p < 0.005] at 52 days). The resulting tumors

stably overexpressed full-length cIAP1 protein (Figure 6C,

compare lane 2 to lanes 8–13) and several degradation

products (Silke et al., 2005) and displayed a histopathology

that resembled moderately well to poorly differentiated

HCC (data not shown). Interestingly, one control tumor

that was harvested at a very small size already showed el-

evated levels of cIAP1 (Figure 6C, lane 7), consistent with a

subset of cells acquiring a spontaneous alteration that

upregulated the gene. In contrast, cIAP1 did not affect

the onset or progression of tumors expressing Akt or Ras

(Figures 6D and 6E), even though cIAP1 was efficiently ex-

pressed (Figures S4A and S4B). Thus, cIAP1 is selectively

oncogenic in the genetic context where its amplification

occurs.

To determine whether the cIAP proteins help sustain tu-

morigenesis, we next examined the impact of reducing

cIAP levels on tumor growth. We chose to suppress the
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expression of cIAP1 and cIAP2 since cIAP2 can be upre-

gulated in response to downregulation of cIAP1 (Conze

et al., 2005). shRNAs capable of suppressing cIAP1 and

cIAP2 expression by RNA interference (Figure 6F, com-

pare lanes 1 and 2) were cointroduced into outgrown

murine hepatoma cells containing or lacking the 9qA1 am-

plicon. These cells were then injected subcutaneously into

immunocompromised mice.

Tumors arising from 9qA1-positive cells expressing

cIAP1 and cIAP2 shRNAs showed a reduced growth

rate compared to controls (Figure 6G; p < 0.005 for tumor

burden ‘‘vector; vector’’ versus sh cIAP1;sh cIAP2 at day

18). Although tumor inhibition was incomplete, the effi-

ciency of cIAP knockdown was greatly reduced in the out-

grown tumors compared to the injected cells (Figure 6F,

compare lane 2 and lanes 5 and 6), implying that cells

retaining high cIAP levels were selected during tumor

expansion. These same shRNAs had no impact on the

growth of amplicon-negative tumors expressing either

Myc or oncogenic Ras (Figure 6H; Figure S4D), suggesting

that only cells selected for cIAP overexpression are sensi-

tive to cIAP inhibition and ruling out off-target effects of

these shRNAs on tumor growth (see also Figure S4C).

Therefore, the cIAP genes are required for the efficient

growth of tumors harboring the 9qA1 amplicon.

Yap Has Oncogenic Properties and Contributes

to Rapid Tumor Growth

In addition to cIAP1, Yap was also overexpressed at the

RNA and protein level in every tumor harboring the mouse

9qA1 or human 11q22 amplicon. Yap (synonyms Yap65 or

Yap1) was originally identified due to its interaction with

the Src-family kinase Yes (Sudol, 1994) and acts as a tran-

scriptional coactivator that can bind and activate Runx

and TEAD/TEF transcription factors (Yagi et al., 1999). In-

consistent with an oncogenic role, mammalian Yap also

interacts with the p53 family member p73 (Strano et al.,

2001) and potentiates apoptosis in a manner that is sup-

pressed by Akt (Basu et al., 2003). However, recent stud-

ies suggest that yorkie, the Drosophila homolog of Yap,

promotes tissue expansion as an effector of the Lats/

Warts pathway by activating cyclin E and the Drosophila

inhibitor of the apoptosis gene dIAP (Huang et al., 2005).

Interestingly, we also noted that murine tumors harboring

the 9qA1 amplicon overexpressed cyclin E (Figure 7B).

To determine whether Yap could also contribute to the

transformation of liver progenitor cells, we conducted

functional studies that paralleled our analysis of cIAP1.

p53�/�;myc hepatoblasts expressing Yap grew more rap-

idly than vector-infected cells (data not shown), with

a higher BrdU incorporation rate (Figure 7A). Furthermore,

Yap significantly accelerated tumor onset and progression

of p53�/�;myc liver progenitor cells (Figure 7C) and greatly

increased tumor burden (myc;vector versus myc;Yap at

day 40 [p < 0.005]). In contrast, Yap did not accelerate tu-

morigenesis together with activated Ras, although it did

enhance Akt-driven tumorigenesis, particularly at later

times (Figures 7D and 7E).



Figure 6. cIAP1 Enhances the Tumorigenicity of myc-Overexpressing p53�/� Hepatoblasts

(A) Apoptosis measurements (Cell Death Detection ELISAPLUS kit; Roche) from p53�/� hepatoblasts double infected with myc + cIAP1 or myc + vector

following culture under the indicated serum conditions for 48 hr (left panel). Cells grown to confluence were cultured for another 48 hr, and cell death

was measured (right panel). Error bars represent mean ± SD (n = 3) per data point.

(B) Tumor volume measurements at various times following subcutaneous injection of p53�/� hepatoblasts double infected with myc + cIAP1 or myc +

vector into the rear flanks of nude mice (n = 6 for each group). Shown is a representative of three independent experiments, each showing a statistical

difference between cIAP1 and control (p < 0.05). Error bars represent ±SD.

(C) Immunoblotting of tumors overexpressing myc-tagged cIAP1 (lanes 8–13) or control vector tumors (lanes 5–7) using antibodies against cIAP1.

Samples from cultured myc-tagged cIAP1-expressing hepatoblasts (M, lane 2) or vector alone (V, lane 1) and from 9qA1 amplicon-containing cells

(A+, lane 4) were analyzed for comparison. Note that myc-tagged cIAP1 migrates at 75 kDa and endogenous cIAP1 at 65 kDa. A� is lysate from

amplicon-negative cells of the same genotype (p53�/�;myc). Tubulin was used as a loading control.

(D and E) p53�/� hepatoblasts coexpressing Ras (D) or Akt (E) with cIAP1 or a control vector were monitored for tumorigenicity following subcuta-

neous injection into nude mice (n = 6 per group). Error bars represent ±SD.

(F) Immunoblotting of lysates derived from hepatoma cells outgrown from a 9qA1-positive p53�/�;myc tumor transduced with shRNAs targeting

cIAP1 and cIAP2 (sh 1+2) or control vectors (V) using antibodies against cIAP1.

(G and H) 9qA1-positive (G) and -negative (H) hepatoma cells expressing cIAP1/2 shRNAs or a control vector were monitored for tumor growth

following subcutaneous injection into nude mice. Error bars represent ±SD.
We also tested whether Yap was required for efficient

tumor growth. Two distinct shRNAs were capable of sup-

pressing Yap expression, and, interestingly, cells express-

ing either Yap shRNA downregulated cyclin E (Figure 7F).

Despite the incomplete suppression of Yap, cells harbor-

ing the 9qA1 amplicon and expressing either Yap shRNA

showed slower tumor progression compared to controls

following injection into recipient mice (Figure 7G; p < 0.05
[0.013 (shYap 2)/0.018 (shYap 1)] at day 25 postinjection).

Together, these data validate Yap as a potent oncogene.

cIAP1 and Yap Cooperate to Promote Tumorigenesis

As prevailing view in cancer genomics is that focal geno-

mic amplifications contain a key driver gene that is se-

lected for during tumorigenesis, it was surprising to identify

two oncogenes in the same focal amplicon. To determine
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Figure 7. Yap Confers a Proliferative Ad-

vantage, Has Oncogenic Properties, and

Is Required for Liver Tumor Progression

(A) The proliferation rates of p53�/�;myc hepa-

toblasts expressing Yap or a control vector

were assessed by the fraction of nuclei incor-

porating BrdU after a 1 hr pulse.

(B) Protein lysates from two 9qA1 amplicon-

positive tumors (+), two amplicon-negative tu-

mors (�), and adult normal mouse liver were

immunoblotted with antibodies against Yap

and cyclin E. Tubulin was used as a loading

control. * denotes a nonspecific band in the

liver lysate.

(C–E) The tumorigenicity of p53�/� liver pro-

genitor cells coexpressing the indicated onco-

gene (upper left) with a control vector or Yap

was assessed by caliper measurement follow-

ing subcutaneous injection into the rear flanks

of nude mice (n = 4 per group). Error bars rep-

resent ±SD.

(F) Protein lysates from hepatoma cells (p53�/�;

myc) stably overexpressing Yap were infected

with control vector (V) or two different short-

hairpin RNAs targeting Yap (sh1 and sh2) and

were analyzed for Yap and cyclin E levels.

Tubulin was used as a loading control.

(G) Tumorigenicity of 9qA1-positive cells in-

fected with retroviral vectors expressing

shRNAs targeting Yap (sh1Yap or sh2Yap) or

control vector (n = 6 per group). Error bars

represent ±SD.
whether cIAP1 and Yap might cooperate during tumori-

genesis, p53�/�;myc liver progenitor cells were infected

with either Yap and control vector or Yap plus cIAP1 and

assayed for their ability to form tumors in vivo. Tumors aris-

ing from p53�/�;myc hepatoblasts coexpressing cIAP1

and Yap grew faster than those expressing either onco-

gene alone (Figure 8A; p < 0.005 and p < 0.05 [0.011] for

cIAP1 + Yap versus cIAP1 or Yap alone, respectively).

These effects were not merely additive: At time points

when tumors expressing Yap alone were small and those

harboring cIAP1 alone were barely detectable, tumors co-

expressing Yap and cIAP1 were so large that the animals

had to be sacrificed (Figures 8A and 8B). Other gene com-

binations did not have these effects; for example, coex-

pression of cIAP2 and cIAP1 had no further impact on

tumorigenesis compared to cIAP1 alone, and the combi-

nation of Porimin with Yap appeared to even delay tumor-

igenesis (data not shown). Thus, our study establishes that

two adjacent genes from the same focal amplification can

cooperate during tumorigenesis.

DISCUSSION

A New Mouse Model of Hepatocellular Carcinoma

Here we develop and utilize a genetically tractable mouse

model of hepatocellular carcinoma that is based on the

isolation and ex vivo genetic manipulation of mouse em-
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bryonic liver progenitor cells followed by their seeding

into the livers of recipient mice. This model produces pa-

thologies that resemble human liver carcinomas and has

other features that make it amenable for studying liver

cancer biology. First, the ability to manipulate liver pro-

genitor cells—one presumed target of transformation in

hepatocarcinogenesis—ex vivo allows the rapid produc-

tion and analysis of tumors with complex genotypes with-

out the cost and effort associated with genetic intercross-

ing of cancer-prone strains. Second, the fact that the

system relies on transplantation of progenitor cells implies

that the recipient mice could also have different geno-

types, thereby facilitating studies of tumor/host interac-

tions. Third, the model uses bipotential liver progenitors

as the cancer-initiating cell, making it suitable for studying

a potential ‘‘cell of origin’’ of different primary liver can-

cers. Finally, the ability to rapidly generate pathologically

accurate liver tumors with different genotypes makes the

model an ideal preclinical system for testing new drugs

or drug combinations for HCC, a disease for which current

therapies are ineffective.

Identification and Validation of cIAP1 and Yap

as Human Oncogenes

We noted that amplifications of chromosome 9qA1 oc-

curred at a high frequency in murine tumors derived

from Myc-expressing cells, and at a lower frequency at



Figure 8. cIAP1 and Yap Synergize to Drive Tumorigenesis

(A) p53�/�;myc liver progenitor cells were infected with control vector, cIAP1, or Yap or coinfected with Yap + cIAP1 and then transplanted subcu-

taneously into nude mice (n = 6 per group). Error bars represent ±SD.

(B) GFP imaging of the tumors described in (A).
the syntenic region of chromosome 11q22 in human liver

cancers. Although the 11q22 amplicon has been observed

in several tumor types, previous studies have not agreed

on the likely driver gene(s), in part, because validation

was lacking (Dai et al., 2003; Snijders et al., 2005;

Bashyam et al., 2005; Imoto et al., 2001). However,

through comparative oncogenomics and expression anal-

yses, we pinpointed cIAP1 and Yap as the most likely

driver genes in liver cancer; then, by returning to the

mouse model, we rapidly demonstrated the oncogenic

capacity of cIAP1 and Yap in the genetic setting where

spontaneous amplification occurred. Despite the detec-

tion of the 11q22 amplicon in only 5%–10% of human tu-

mor types examined, its association with common malig-

nancies including lung, ovarian, esophageal, and liver

carcinoma suggest that the overall contribution of cIAP1

and Yap to human cancer may be substantial.

The identification of cIAP1 as an oncogene is interesting

in light of the controversial role of IAPs in modulating apo-

ptosis in mammalian cells (Deveraux et al., 1998; Liston

et al., 2003; Salvesen and Duckett, 2002). In Drosophila,

the IAP genes are important cell death regulators, with

loss-of-function mutants displaying profound defects in

developmental and stress-induced apoptosis (Goyal

et al., 2000). In mammalian cells, a large body of work

shows that IAPs can suppress apoptosis (Lacasse et al.,

1998), although most studies observe relatively modest

effects despite overexpression in transient assays, and

mice with knockout of single IAP genes do not display

substantial apoptotic defects (Conze et al., 2005). Simi-

larly, IAP expression has been associated with various

cancer phenotypes (Wright and Duckett, 2005), but no

IAP has been decisively linked to tumorigenesis in vivo.

cIAP1 promoted murine HCC in cooperation with Myc,

an oncogene that drives proliferation but also promotes

apoptosis through both p53-dependent and -independent

mechanisms (Lowe et al., 2004). As in other cell types,

Myc sensitizes hepatoblasts to diverse proapoptotic sig-
nals, and dampening of such signals is linked to tumori-

genesis in other contexts. In our system, the effects of

cIAP1 appeared more pronounced in vivo, suggesting

that microenvironmental effects associated with tumor

expansion may be critical for its prosurvival activities. Per-

haps this explains the variable effects of cIAP1 observed

in previous in vitro studies; alternatively, nonapoptotic

cIAP1 activities may contribute to its oncogenic role. In

any case, the antiapoptotic activity of cIAP1 would be un-

likely to cooperate with Akt or Ras, which already transmit

prosurvival signals (Lowe et al., 2004).

The finding that Yap is also an oncogene in the 9qA1/

11q22 amplicon is surprising considering its ability to po-

tentiate the proapoptotic functions of p73, a p53 family

member (Basu et al., 2003). However, yorkie (yki), the

Drosophila homolog of mammalian Yap, links warts/large

tumor suppressor (wts/lats) signaling and transcriptional

regulation in the Hippo (hpo) pathway (Huang et al.,

2005). This pathway also includes the genes salvador

(sav), mob as tumor suppressor (mats), NF2/Merlin, and ex-

panded (Hamaratoglu et al., 2006; Edgar, 2006) and func-

tions to precisely control tissue expansion by coordinately

regulating cell proliferation and cell death. This is ultimately

achieved through transcriptional regulation of cyclin E and

the Drosophila inhibitor of apoptosis protein, dIAP.

Interestingly, mammalian homologs exist for most

Hippo pathway members (Chan et al., 2005; Tamaskovic

et al., 2003), some of which have previously been linked

to cancer development (e.g., Lats2 and NF2) (St John

et al., 1999; Takahashi et al., 2005; McClatchey and Gio-

vannini, 2005). In addition, Drosophila mutants can be res-

cued by the human homologs for Yap, LATS1, MATS1,

and MSTS2. Interestingly, although Yap may have addi-

tional targets in mammalian cells, we note that mammalian

cells and tumors with high Yap levels proliferate rapidly

and have high levels of cyclin E. It is intriguing that

cIAP1—a gene with structural and functional similarity to

dIAP—resides in an adjacent chromosomal location in
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mice and humans and is coamplified with Yap in tumors.

These data demonstrate a functional conservation and

reveal the potential importance of the Hippo signaling net-

work in hepatocellular carcinoma and perhaps other can-

cers. In further support of this possibility, Yap can also

transform mammary epithelial cells in vitro (D. Haber and

J. Brugge, personal communication).

Perhaps the most remarkable observation in our study

was the demonstration that two genes embedded within

the same focal amplification cooperate in cancer develop-

ment. Thus, while cIAP1 and Yap can act independently as

oncogenes, they synergize in transforming hepatoblasts

and promoting tumorigenesis. Such codriver effects may

not be restricted to the 11q22 amplicon, as suggested in

a recent study of the 20q13.2 breast cancer amplicon,

where there is universal overexpression of two genes:

ZNF217, which is capable of immortalizing human mam-

mary epithelial cells in culture, and prefoldin 4 (PFDN4)

(Collins et al., 2001). These results underscore the com-

plexity of cancer genomes and should force a reexamina-

tion of well-characterized amplification events for the

presence of additional oncogenic lesions and potential

drug targets.

Comparative Oncogenomics to Accelerate Cancer

Genome Annotation and Target Identification

Our study took advantage of cross-species comparisons

to help prioritize candidate oncogenes and then used a rel-

evant mouse model to validate their role in tumorigenesis.

Thus, our genome-wide analysis of human HCC identified

a large number of genetic changes including the 11q22

amplicon, but the fact we detected a syntenic lesion on

chromosome 9qA1 in a specific type of murine HCC pro-

vided a filter that allowed us to prioritize this lesion for

further study. Importantly, our analysis of mouse tumors

identified an appropriate setting to study the oncogenic

potential of cIAP1 and Yap: a genetic background in which

amplification of cIAP1 and Yap spontaneously occurred.

A similar comparative genomic approach has been ap-

plied by Chin and colleagues to identify NEDD9 as a me-

tastasis-promoting gene that allows escape from tumor

cell dependence on Ras signaling (Kim et al., 2006 [this

issue of Cell]).

Moving forward, our study suggests an integrative strat-

egy to complement the Human Cancer Genome Project,

whose goal is to catalog all of the mutations that contrib-

ute to human cancer (Garber, 2005). The advantages of

using genomics to survey human tumors are obvious:

These tumors harbor changes relevant to the human dis-

ease. However, spontaneous human cancers are hetero-

geneous and can display extreme genomic instability.

Thus, it is often difficult to separate causative from pas-

senger mutations or to identify the key gene (or genes) in

a larger region of chromosomal gain or loss (Cox et al.,

2005; Futreal et al., 2005). Even with a statistically good

candidate, validation can be challenging—it is often nec-

essary to survey many in vitro assays to link a particular le-

sion to cancer phenotypes. Furthermore, without in vivo
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validation, therapeutic development efforts are difficult

to envision.

By integrating data from human cancer genomics with

corresponding data from appropriate mouse models, it

should be possible to expeditiously focus on the cancer

lesions most likely to have translational potential. First,

identifying common lesions through cross-species com-

parisons increases confidence that these lesions will

prove important, a particularly relevant issue when study-

ing relatively low-frequency events. In fact, owing to

reduced selective pressure for multiple mutations and/or

inherent differences in telomere biology (Artandi and

Depinho, 2000), genetically defined murine tumors are

often less complex than their corresponding human coun-

terparts. Second, by incorporating murine tumors into the

analysis, it is possible to increase the sample size and ex-

ploit synteny to exclude candidates outside the region of

overlap. Third, genetically engineered mice, by definition,

develop more defined cancers than humans. Thus, the

identification of a particular lesion in murine cancers im-

mediately provides information concerning the evolution-

ary context in which it arose and identifies a relevant set-

ting in which to study its oncogenic potential. Finally,

mouse models provide excellent settings to test the suit-

ability of a cancer lesion as a therapeutic target and, at

the same time, provide ideal preclinical models for subse-

quent drug testing. We believe that such integrative ap-

proaches will speed up the pace of discovery and help

translate the promise of cancer genetics into improve-

ments in cancer diagnosis, prognosis, and therapy.

EXPERIMENTAL PROCEDURES

Generation of Genetically Defined Liver Carcinomas, Tumor

Retransplantation, Analysis, and Immunohistochemistry

Isolation, culturing, and retroviral infection of purified hepatoblasts as

well as surgical procedures, retrorsine treatment of mice, tumor mon-

itoring, and tumor retransplantation are described in the Supplemental

Experimental Procedures and Zender et al. (2006). All retroviruses

were based on MSCV vectors containing human cDNAs encoding

for myc, H-RasV12, and Akt or the murine cDNAs encoding Yap and

myc-tagged cIAP1. Short-hairpin RNAs against cIAP1, cIAP2, or Yap

were expressed from the LTR promoter of MSCV retroviruses. Tumor

volume (cm3) was calculated as length 3 width 3 height. Paraffin-em-

bedded liver tumor sections were stained with hematoxylin and eosin

according to standard protocols or with a-GFP (Abcam 290). Standard

Proteinase K antigen retrieval was used. Human hepatocellular carci-

nomas were analyzed using antibodies against Ck8 (RDI), cIAP1 (Silke

et al., 2005), cIAP2 (sc-7944, Santa Cruz), YAP1 (sc-15407, Santa

Cruz), and Porimin (IMG472, Imgenex).

Immunoblotting

Fresh tumor tissue or cell pellets were lysed in RIPA buffer using a tis-

sue homogenizer. Equal amounts of protein (16 mg) were separated on

10% SDS-polyacrylamide gels and transferred to PVDF membranes.

The blots were probed with antibodies against cIAP1 (Silke et al.,

2005), cIAP1/2 (gift from P. Liston; 1:2000), YAP1 (sc-15407, Santa

Cruz; 1:200), Porimin (IMG472, Imgenex; 1:300), cyclin E (#06-459, Up-

state; 1:500), tubulin (B-5-1-2, Sigma; 1:5000), vimentin (Abcam;

1:1000), cytokeratin 19 (Biocare Medical; 1:1000), albumin (Biogene-

sis; 1:5000), or AFP (Dako; 1:1000).



Cell Proliferation Assay and Cell Death ELISA

Cells plated on gelatin-coated coverslips were incubated with 5-

bromo-20-deoxyuridine (BrdU; 100 mg/ml; Sigma) for 1 hr. Nuclei incor-

porating BrdU were visualized by immunolabeling using anti-BrdU

antibody (Pharmingen; 1:400) as previously described (Narita et al.,

2003). DNA was visualized by DAPI (1 mg/ml) after permeabilization

with 0.2% Triton X-100/PBS. Cells were grown in various concentra-

tions of serum, and apoptosis was measured using the Cell Death

Detection ELISAPLUS kit (Roche).

Representational Oligonucleotide Microarray Analysis

Human tumor samples were obtained from the NCI-sponsored Coop-

erative Human Tissue Network or the tissue bank of the University of

Hong Kong. Genomic DNA was isolated from human or mouse tumors

using the PureGene DNA Isolation Kit (Gentra). Hybridizations were

carried out on 85K arrays (NimbleGen) (Lucito et al., 2003; B. Lakshmi,

I.M. Hall, C. Egan, J. Alexander, J. Healy, L.Z., W.X., M.S.S., S.W.L.,

M.W., and R.L., unpublished data). The genome position was deter-

mined from the UCSC GoldenPath browser (freezes April 2003 for hu-

man and February 2003 for mouse). Focal gains or losses were defined

as spanning <5 Mb.

Quantitative Real-Time PCR

Quantitative real-time PCR was performed on a PRISM 7700 sequence

detector (Applied Biosystems, Foster City, CA, USA). Quantification of

genomic copy number was based on standard curves derived from se-

rial dilutions of normal human genomic DNA (Invitrogen). For quantita-

tion of mRNA expression, mouse tumors were freshly homogenized in

Trizol (GIBCO). RNA was isolated and treated with RNase-free DNase

(QIAGEN) and purified over QIAGEN RNAeasy columns. Total RNA

was converted to cDNA using TaqMan reverse transcription reagents

(Applied Biosystems) and used in qPCR reactions with incorporation of

Sybr Green PCR Master Mix (Applied Biosystems) done in triplicate

using gene-specific primers. Quantification of mRNA expression of

human tumor samples was performed using TaqMan probes (Applied

Biosystems). Samples were normalized to the level of b-actin. Primer

sequences are listed in Supplemental Experimental Procedures.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

Supplemental References, four figures, and three tables and can be

found with this article online at http://www.cell.com/cgi/content/full/

125/7/1253/DC1/.
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